1.Melatonin reduces ultraviolet-B induced cell damages and polyamine levels in human skin fibroblasts in culture.
Kyu Suk LEE ; Won Suk LEE ; Seong Il SUH ; Sang Pyo KIM ; Sung Ryong LEE ; Young Wook RYOO ; Byung Chun KIM
Experimental & Molecular Medicine 2003;35(4):263-268
UV radiation is known to cause photoaging of the skin and is considered one of the leading cause of developing skin carcinogenesis. Melatonin which has a highly lipophilic molecular structure facilitating penetration of cell membranes and serving as an extra- and intracellular free radical scavenger has been demonstrated to protect photodamage of skin affected by UV exposure. In this study, we have examined the role of melatonin in response to UVB induced photodamaging process, using human skin fibroblasts in vitro. Cell survival curves after UVB irradiation showed dose-dependent decrease. Only 60% of fibroblasts were survived at 140 mJ/cm2 UVB irradiation. By pre-cultivation of cells with melatonin (100 nM), a significant number of cells remained unaffected. After UVB irradiation with 70 mJ/cm2, the level of putrescine was 1.7+/-0.3 fold increased compared to melatonin pre-treated group. In Northern analyses, the transcriptional level of ornithine decarboxylase (ODC) gene expression was increased by UVB irradiation and prohibited by melatonin. These results indicated that melatonin was effectively able to neutralize membrane peroxidation when present in relevant concentration during UVB irradiation and diminishes the UVB-induced increase of polyamine synthesis and ODC gene expression. Collectively, ODC response to UVB induced changes are possibly involves a melatonin or antioxidant sensitive regulatory pathway in normal human skin fibroblast.
Antioxidants/*pharmacology
;
Apoptosis/drug effects/radiation effects
;
Fibroblasts/*drug effects/*radiation effects
;
Human
;
Melatonin/*pharmacology
;
Ornithine Decarboxylase/biosynthesis/genetics
;
Polyamines/*metabolism
;
*Ultraviolet Rays
2.Cordycepin inhibits UVB-induced matrix metalloproteinase expression by suppressing the NF-kappa B pathway in human dermal fibroblasts.
Young Rae LEE ; Eun Mi NOH ; Eun Yong JEONG ; Seok Kweon YUN ; Young Ju JEONG ; Jong Hyeon KIM ; Kang Beom KWON ; Byeong Soo KIM ; Sung Ho LEE ; Chang Sik PARK ; Jong Suk KIM
Experimental & Molecular Medicine 2009;41(8):548-554
Cordycepin (3'-deoxyadenosine) has been shown to exhibit many pharmacological activities, including anti-cancer, anti-inflammatory, and anti-infection activities. However, the anti-skin photoaging effects of cordycepin have not yet been reported. In the present study, we investigated the inhibitory effects of cordycepin on matrix metalloproteinase-1 (MMP-1) and -3 expressions of the human dermal fibroblast cells. Western blot analysis and real-time PCR revealed cordycepin inhibited UVB-induced MMP-1 and -3 expressions in a dose-dependent manner. UVB strongly activated NF-kappa B activity, which was determined by I kappa B alpha degradation, nuclear localization of p50 and p65 subunit, and NF-kappa B binding activity. However, UVB-induced NF-kappa B activation and MMP expression were completely blocked by cordycepin pretreatment. These findings suggest that cordycepin could prevent UVB-induced MMPs expressions through inhibition of NF-kappa B activation. In conclusion, cordycepin might be used as a potential agent for the prevention and treatment of skin photoaging.
Aging/physiology
;
Cells, Cultured
;
Deoxyadenosines/*pharmacology
;
*Dermis/cytology/drug effects/physiology/radiation effects
;
Dose-Response Relationship, Drug
;
Enzyme Induction/drug effects
;
Fibroblasts/drug effects/metabolism/radiation effects
;
Gene Expression Regulation, Enzymologic
;
Humans
;
Infant, Newborn
;
Male
;
*Matrix Metalloproteinase 1/antagonists & inhibitors/biosynthesis/genetics/radiation effects
;
Matrix Metalloproteinase 3/antagonists & inhibitors/*biosynthesis/genetics/radiation effects
;
NF-kappa B/*antagonists & inhibitors/genetics/metabolism
;
Skin/physiopathology/radiation effects
;
*Ultraviolet Rays
3.Heijiangdan ointment relieves oxidative stress from radiation dermatitis induced by (60)Co γ-ray in mice.
Lin YANG ; Ming-wei YU ; Xiao-min WANG ; Yi ZHANG ; Guo-wang YANG ; Xiao-qin LUO ; Rui-yun PENG ; Ya-bing GAO ; Li ZHAO ; Li-feng WANG
Chinese journal of integrative medicine 2016;22(2):110-115
OBJECTIVETo investigate the effects of Heijiangdan Ointment ( HJD) on oxidative stress in (60)Co γ-ray radiation-induced dermatitis in mice.
METHODSFemale Wistar mice with grade 4 radiation dermatitis induced by (60)Co γ-rays were randomly divided into four groups (n=12 per group); the HJD-treated, recombinant human epidermal growth factor (rhEGF)-treated, Trolox-treated, and untreated groups, along with a negative control group. On the 11th and 21st days after treatment, 6 mice in each group were chosen for evaluation. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), and lactate dehydrogenase (LDH) were detected using spectrophotometric methods. The fibroblast mitochondria were observed by transmission electron microscopy (TEM). The expressions of fibroblast growth factor 2 (FGF-2) and transforming growth factor β1 (TGF-β1) were analyzed by western blot.
RESULTSCompared with the untreated group, the levels of SOD, MDA and LDH, on the 11th and 21st days after treatment showed significant difference (P<0.05). TEM analysis indicated that fibroblast mitochondria in the untreated group exhibited swelling and the cristae appeared fractured, while in the HJD group, the swelling of mitochondria was limited and the rough endoplasmic reticulum appeared more relaxed. The expressions of FGF-2 and TGF-β1 increased in the untreated group compared with the negative control group (P<0.05). After treatment, the expression of FGF-2, rhEGF and Trolox in the HJD group were significantly increased compared with the untreated group (P<0.05), or compared with the negative control group (P<0.05). The expression of TGF-β1 showed significant difference between untreated and negative control groups (P<0.05). HJD and Trolox increased the level of TGF-β1 and the difference was marked as compared with the untreated and negative control groups (P<0.05).
CONCLUSIONHJD relieves oxidative stress-induced injury, increases the antioxidant activity, mitigates the fibroblast mitochondrial damage, up-regulates the expression of growth factor, and promotes mitochondrial repair in mice.
Animals ; Biological Products ; pharmacology ; therapeutic use ; Cell Proliferation ; drug effects ; radiation effects ; Cobalt Radioisotopes ; Dermatitis ; complications ; drug therapy ; pathology ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Female ; Fibroblast Growth Factor 2 ; genetics ; metabolism ; Fibroblasts ; drug effects ; pathology ; radiation effects ; Gamma Rays ; Humans ; L-Lactate Dehydrogenase ; metabolism ; Malondialdehyde ; metabolism ; Mice ; Mitochondria ; drug effects ; metabolism ; radiation effects ; Ointments ; Oxidative Stress ; drug effects ; radiation effects ; Pharmaceutical Preparations ; Radiation Injuries ; complications ; drug therapy ; pathology ; Superoxide Dismutase ; metabolism ; Transforming Growth Factor beta1 ; genetics ; metabolism ; Up-Regulation ; drug effects ; radiation effects
4.Superposition of noise magnetic fields inhibits clustering of fibroblast membrane surface receptors induced by 50 Hz magnetic fields in Chinese hamster lungs.
Wen-jun SUN ; Yi-ti FU ; De-qiang LU ; Huai JIANG
Chinese Journal of Preventive Medicine 2004;38(1):5-7
OBJECTIVETo study the possible induction effect of exposure to 50 Hz magnetic field (MF) on clustering of cell membrane surface receptors for epidermal growth factor (EGF) and tumor necrosis factor (TNF), the starting site of signals of biological effects, and its possible intervention effect.
METHODSLung fibroblasts of Chinese hamster (CHL) were exposed to EGF, TNF, 0.4 mT 50 Hz MF, 0.4 mT noise MF, and 0.4 mT 50 Hz MF combined with 0.4 mT noise MF. Respectively, for different durations, following the treatment, EGF and TNF receptors on the cell membrane were marked by corresponding antibodies with immunohistochemical method, then observed under a confocal microscope.
RESULTSClustering of cell membrane receptors could be induced 5 min after treatment with EGF and TNF, as well as with 50 Hz MF at 0.4 mT, which reached the peak in 15 min. While noise MF with the same intensity did not induce clustering of cell membrane receptors. Superposition of noise MF with the same intensity could inhibit clustering of cell membrane receptors induced by 50 Hz MF.
CONCLUSIONClustering of EGF and TNF receptors on the cell membrane could be induced by 50 Hz MF, suggesting that membrane receptors would be one of the sites where MF signals coupled, and noise MF with the same intensity could inhibit these effects.
Animals ; Cell Line ; Cricetinae ; Electromagnetic Fields ; adverse effects ; Epidermal Growth Factor ; pharmacology ; Fibroblasts ; drug effects ; metabolism ; radiation effects ; Noise ; adverse effects ; Receptor, Epidermal Growth Factor ; metabolism ; Receptors, Cell Surface ; metabolism ; Receptors, Tumor Necrosis Factor ; metabolism ; Tumor Necrosis Factor-alpha ; pharmacology
5.A standardized extract of Asparagus officinalis stem prevents reduction in heat shock protein 70 expression in ultraviolet-B-irradiated normal human dermal fibroblasts: an in vitro study.
Ken SHIRATO ; Jun TAKANARI ; Tomoko KODA ; Takuya SAKURAI ; Junetsu OGASAWARA ; Hideki OHNO ; Takako KIZAKI
Environmental Health and Preventive Medicine 2018;23(1):40-40
BACKGROUND:
Heat shock protein 70 (HSP70) exhibits protective effects against ultraviolet (UV)-induced premature skin aging. A standardized extract of Asparagus officinalis stem (EAS) is produced as a novel and unique functional food that induces HSP70 cellular expression. To elucidate the anti-photoaging potencies of EAS, we examined its effects on HSP70 expression levels in UV-B-irradiated normal human dermal fibroblasts (NHDFs).
METHODS:
NHDFs were treated with 1 mg/mL of EAS or dextrin (vehicle control) prior to UV-B irradiation (20 mJ/cm). After culturing NHDFs for different time periods, HSP70 mRNA and protein levels were analyzed using real-time polymerase chain reaction and western blotting, respectively.
RESULTS:
UV-B-irradiated NHDFs showed reduced HSP70 mRNA levels after 1-6 h of culture, which were recovered after 24 h of culture. Treatment with EAS alone for 24 h increased HSP70 mRNA levels in the NHDFs, but the increase was not reflected in its protein levels. On the other hand, pretreatment with EAS abolished the UV-B irradiation-induced reduction in HSP70 expression at both mRNA and protein levels. These results suggest that EAS is capable to preserve HSP70 quantity in UV-B-irradiated NHDFs.
CONCLUSIONS
EAS exhibits anti-photoaging potencies by preventing the reduction in HSP70 expression in UV-irradiated dermal fibroblasts.
Asparagus Plant
;
Cells, Cultured
;
Female
;
Fibroblasts
;
drug effects
;
radiation effects
;
HSP70 Heat-Shock Proteins
;
biosynthesis
;
Humans
;
Middle Aged
;
Plant Extracts
;
pharmacology
;
Polymerase Chain Reaction
;
Skin
;
drug effects
;
radiation effects
;
Skin Aging
;
drug effects
;
radiation effects
;
Telomere
;
metabolism
;
Ultraviolet Rays
;
adverse effects
6.Influence of quercetin and x-ray on collagen synthesis of cultured human keloid-derived fibroblasts.
Xiao LONG ; Xuan ZENG ; Fu-quan ZHANG ; Xiao-jun WANG
Chinese Medical Sciences Journal 2006;21(3):179-183
OBJECTIVETo investigate the effects of quercetin and X-ray on collagen synthesis of cultured human keloid-derived fibroblast and the mechanism.
METHODSCollagen synthesis of cultured human keloid and normal fibroblasts were detected by hydroxyproline colorimetric analysis. Immunocytochemical staining was used to investigate collagen I and III expression. mRNA expression of collagen I and III, and transforming growth factor (TGF)-beta 1 were assayed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR.
RESULTSQuercetin inhibited the collagen synthesis of both keloid and normal fibroblasts in a dose-dependent manner. Immunocytochemical staining indicated that collagen I and III were down-regulated by quercetin and X-ray (P < 0.05), particularly collagen I (P < 0.05). mRNA expression of both collagen I and III in quercetin groups significantly decreased compared with that in control group (P < 0.05), especially in the group treated with both quercetin and X-ray (P < 0.01). mRNA level of TGF-beta 1 gene was down-regulated by quercertin (P < 0.05).
CONCLUSIONSQuercetin will probably be one of the new medicines which could effectively treat keloid. Quercetin combined with X-ray could reduce the dose of radiation.
Adult ; Cells, Cultured ; Collagen Type I ; biosynthesis ; genetics ; radiation effects ; Collagen Type III ; biosynthesis ; genetics ; radiation effects ; Dose-Response Relationship, Drug ; Female ; Fibroblasts ; metabolism ; pathology ; radiation effects ; Humans ; Keloid ; metabolism ; pathology ; Male ; Quercetin ; administration & dosage ; pharmacology ; RNA, Messenger ; biosynthesis ; Skin ; cytology ; Transforming Growth Factor beta1 ; biosynthesis ; genetics ; radiation effects
7.Ultraviolet A Enhances Cathepsin L Expression and Activity via JNK Pathway in Human Dermal Fibroblasts.
Qing-Fang XU ; Yue ZHENG ; Jian CHEN ; Xin-Ya XU ; Zi-Jian GONG ; Yun-Fen HUANG ; Chun LU ; Howard I MAIBACH ; Wei LAI
Chinese Medical Journal 2016;129(23):2853-2860
BACKGROUNDCathepsin L (CatL) is a cysteine protease with strong matrix degradation activity that contributes to photoaging. Mannose phosphate-independent sorting pathways mediate ultraviolet A (UVA)-induced alternate trafficking of CatL. Little is known about signaling pathways involved in the regulation of UVA-induced CatL expression and activity. This study aims to investigate whether a single UVA irradiation affects CatL expression and activity and whether mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) pathway is involved in the regulation of UVA-induced CatL expression and activity in human dermal fibroblasts (HDFs).
METHODSPrimary HDFs were exposed to UVA. Cell proliferation was determined by a cell counting kit. UVA-induced CatL production and activity were studied with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and fluorimetric assay in cell lysates collected on three consecutive days after irradiation. Time courses of UVA-activated JNK and p38MAPK signaling were examined by Western blotting. Effects of MAPK inhibitors and knockdown of Jun and Fos on UVA-induced CatL expression and activity were investigated by RT-PCR, Western blotting, and fluorimetric assay. Data were analyzed by one-way analysis of variance.
RESULTSUVA significantly increased CatL gene expression, protein abundance, and enzymatic activity for three consecutive days after irradiation (F = 83.11, 56.14, and 71.19, respectively; all P < 0.05). Further investigation demonstrated phosphorylation of JNK and p38MAPK activated by UVA. Importantly, inactivation of JNK pathway significantly decreased UVA-induced CatL expression and activity, which were not affected by p38MAPK inhibition. Moreover, knockdown of Jun and Fos significantly attenuated basal and UVA-induced CatL expression and activity.
CONCLUSIONSUVA enhances CatL production and activity in HDFs, probably by activating JNK and downstreaming AP-1. These findings provide a new possible molecular approach for antiphotoaging therapy.
Anthracenes ; pharmacology ; Cathepsin L ; metabolism ; Cells, Cultured ; Child ; Child, Preschool ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; antagonists & inhibitors ; Fibroblasts ; cytology ; drug effects ; metabolism ; radiation effects ; Humans ; Imidazoles ; pharmacology ; MAP Kinase Signaling System ; drug effects ; radiation effects ; Oncogene Proteins v-fos ; genetics ; metabolism ; Proto-Oncogene Proteins c-jun ; genetics ; metabolism ; Pyridines ; pharmacology ; Skin ; cytology ; Ultraviolet Rays
8.Experimental study on effects of endothelin in the proliferation and collagen synthesis of human scar-derived fibroblasts.
Chinese Journal of Plastic Surgery 2003;19(1):51-53
OBJECTIVETo investigate the role of endothelin (ET) in the proliferation and collagen synthesis of human scar-derived fibroblasts and the modulation of its antagonists such as nitric oxide (NO), tetrandrine (Tet).
METHODSWith the cultured fibroblasts from the scarring tissue, the cell proliferation was determined by [3H]-TdR incorporation, while the collagen synthesis was evaluated by [3H]-proline incorporation.
RESULTSThe ET-1 was significantly increasing the proliferation and collagen synthesis of human scar-derived fibroblasts. The values of [3H]-TdR absorption in the 2.5 ng/ml, 25 ng/ml and 100 ng/ml of ET-1 groups were 1.8 times, 4 times and 4.9 times more than in the control group, respectively (P < 0.01), while the values of the [3H]-proline incorporation were 1.1 times, 3.1 times and 3.8 times respectively (P < 0.01). The fibroblasts, treated with 50 micrograms/ml of S-nitroso-N-acetyl penicillamine(SNAP), were no detectable effect on the basal level of DNA synthesis, but produced decreasing effect on the [3H]-TdR absorption (the rate of inhibition was 22.89%, P < 0.05). It was found that the SNAP inhibited the [3H]-proline incorporation in cultured fibroblasts, but the rate of [3H]-proline incorporation induced by ET-1 was unaltered. The Tet with 3 micrograms/ml, in which does not inhibit the basal level of DNA synthesis, was significantly decreasing the collagen synthesis and decreasing the ET-mediated DNA synthesis (the rate of inhibition was 33.21% (P < 0.01).
CONCLUSIONThese results indicate that the ET can obviously increase the proliferation and collagen synthesis of human scar-derived fibroblasts, but it can be partially antagonized by NO and Tet.
Benzylisoquinolines ; pharmacology ; Cell Proliferation ; drug effects ; Cells, Cultured ; Cicatrix ; pathology ; Collagen ; biosynthesis ; DNA ; biosynthesis ; Endothelins ; antagonists & inhibitors ; pharmacology ; Fibroblasts ; cytology ; radiation effects ; Humans ; Nitric Oxide ; metabolism ; pharmacology ; Proline ; metabolism ; S-Nitroso-N-Acetylpenicillamine ; pharmacology
9.Effects of (-)-epigallocatechin-3-gallate on expression of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in fibroblasts irradiated with ultraviolet A.
Xiu-zu SONG ; Ji-ping XIA ; Zhi-gang BI
Chinese Medical Journal 2004;117(12):1838-1841
BACKGROUNDIt is known that ultraviolet irradiation can affect cellular function through a number of signaling pathways. (-)-epigallocatechin-3-gallate (EGCG) is the major effective component in green tea and can offer protection from ultraviolet-induced damage. In this study, we investigated the protective mechanism of EGCG on human dermal fibroblasts damaged by ultraviolet A (UVA) in vitro.
METHODSTranscription factor Jun protein levels were measured by Western blot. Matrix metalloproteinase 1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA were studied by reverse transcription-polymerase chain reaction (RT-PCR) analysis in conjunction with computer-assisted image analysis. MMP-1 and TIMP-1 proteins were quantified by enzyme-linked immunosorbent assay (ELISA).
RESULTSEGCG decreased transcription activity of Jun protein after induction by UVA. Both the mRNA and protein levels of MMP-1 were increased by UVA irradiation, while no significant changes were observed in TIMP-1 levels. The ratio of MMP-1 to TIMP-1 showed statistically significant differences compared with the control. EGCG decreased the ratio of MMP-1 to TIMP-1 by inhibiting UVA-induced MMP-1 expression (P < 0.05).
CONCLUSIONEGCG can protect human fibroblasts against UVA damage by downregulating the transcription activity of Jun protein and the expression of MMP-1. The ratio of MMP-1 to TIMP-1, rather than the levels of MMP-1 or TIMP-1 alone, may play a significant role in human skin photodamage.
Catechin ; analogs & derivatives ; pharmacology ; Cells, Cultured ; Fibroblasts ; metabolism ; radiation effects ; Gene Expression Regulation ; drug effects ; Humans ; Matrix Metalloproteinase 1 ; biosynthesis ; genetics ; Proto-Oncogene Proteins c-jun ; analysis ; RNA, Messenger ; analysis ; Radiation-Protective Agents ; pharmacology ; Reverse Transcriptase Polymerase Chain Reaction ; Tissue Inhibitor of Metalloproteinase-1 ; biosynthesis ; genetics ; Ultraviolet Rays