1.Effects of Single Vitamin D₃ Injection (200,000 Units) on Serum Fibroblast Growth Factor 23 and Sclerostin Levels in Subjects with Vitamin D Deficiency.
Dongdong ZHANG ; Da Hea SEO ; Han Seok CHOI ; Hye Sun PARK ; Yoon Sok CHUNG ; Sung Kil LIM
Endocrinology and Metabolism 2017;32(4):451-459
BACKGROUND: Vitamin D deficiency remains common in all age groups and affects skeletal and non-skeletal health. Fibroblast growth factor 23 is a bone-derived hormone that regulates phosphate and 1,25-dihydroxyvitamin D homeostasis as a counter regulatory factor. 1,25-Dihydroxyvitamin D stimulates fibroblast growth factor 23 synthesis in bone, while fibroblast growth factor 23 suppresses 1,25-dihydroxyvitamin D production in the kidney. The aim of this study was to evaluate the effects of vitamin D₃ intramuscular injection therapy on serum fibroblast growth factor 23 concentrations, and several other parameters associated with bone metabolism such as sclerostin, dickkopf-1, and parathyroid hormone. METHODS: A total of 34 subjects with vitamin D deficiency (defined by serum 25-hydroxyvitamin D levels below 20 ng/mL) were randomly assigned to either the vitamin D injection group (200,000 units) or placebo treatment group. Serum calcium, phosphate, urine calcium/creatinine, serum 25-hydroxyvitamin D, fibroblast growth factor 23, sclerostin, parathyroid hormone, and dickkopf-1 levels were serially measured after treatment. RESULTS: Comparing the vitamin D injection group with the placebo group, no significant changes were observed in serum fibroblast growth factor 23, parathyroid hormone, or dickkopf-1 levels. Serum sclerostin concentrations transiently increased at week 4 in the vitamin D group. However, these elevated levels declined later and there were no statistically significant differences as compared with baseline levels. CONCLUSION: Serum fibroblast factor 23, sclerostin, parathyroid hormone, and dickkopf-1 levels were not affected significantly by single intramuscular injection of vitamin D₃.
Calcium
;
Cholecalciferol
;
Fibroblast Growth Factors*
;
Fibroblasts*
;
Homeostasis
;
Humans
;
Injections, Intramuscular
;
Kidney
;
Metabolism
;
Parathyroid Hormone
;
Vitamin D Deficiency*
;
Vitamin D*
;
Vitamins*
2.Bile Acid Diarrhea: Prevalence, Pathogenesis, and Therapy.
Gut and Liver 2015;9(3):332-339
Bile acid diarrhea (BAD) is usually seen in patients with ileal Crohn's disease or ileal resection. However, 25% to 50% of patients with functional diarrhea or diarrhea-predominant irritable bowel syndrome (IBS-D) also have evidence of BAD. It is estimated that 1% of the population may have BAD. The causes of BAD include a deficiency in fibroblast growth factor 19 (FGF-19), a hormone produced in enterocytes that regulates hepatic bile acid (BA) synthesis. Other potential causes include genetic variations that affect the proteins involved in BA enterohepatic circulation and synthesis or in the TGR5 receptor that mediates the actions of BA in colonic secretion and motility. BAs enhance mucosal permeability, induce water and electrolyte secretion, and accelerate colonic transit partly by stimulating propulsive high-amplitude colonic contractions. There is an increased proportion of primary BAs in the stool of patients with IBS-D, and some changes in the fecal microbiome have been described. There are several methods of diagnosing BAD, such as 75selenium homotaurocholic acid test retention, serum C4, FGF-19, and fecal BA measurement; presently, therapeutic trials with BA sequestrants are most commonly used for diagnosis. Management involves the use of BA sequestrants including cholestyramine, colestipol, and colesevelam. FXR agonists such as obeticholic acid constitute a promising new approach to treating BAD.
Anticholesteremic Agents/therapeutic use
;
Bile Acids and Salts/*physiology
;
Crohn Disease/complications
;
Diarrhea/*etiology/pathology/therapy
;
Feces/chemistry
;
Fibroblast Growth Factors/deficiency
;
Gastrointestinal Microbiome
;
Humans
;
Irritable Bowel Syndrome/complications
3.Tumor-induced osteomalacia
Zinan YIN ; Juan DU ; Fan YU ; Weibo XIA
Osteoporosis and Sarcopenia 2018;4(4):119-127
Tumor-induced osteomalacia (TIO), also known as oncogenic osteomalacia, is a rare paraneoplastic syndrome characterized by hypophosphatemia resulting from decreased tubular phosphate reabsorption, with a low or inappropriately normal level of active vitamin D. The culprit tumors of TIO could produce fibroblast growth factor 23 which plays a role in regulating renal Pi handling and 25-hydroxyvitamin D 1α-hydroxylase activity. Chronic hypophosphatemia could eventually lead to inadequate bone mineralization, presenting as osteomalacia. The diagnosis should be considered when patients manifest as hypophosphatemia and osteomalacia, or rickets and needs to be differentiated from other disorders of phosphate metabolism, such as the inhereditary diseases like X-linked hypophosphataemic rickets, autosomal dominant hypophosphataemic rickets, autosomal recessive hypophosphataemic rickets and acquired diseases like vitamin D deficiency. Localization of responsible tumors could be rather difficult since the vast majority are very small and could be everywhere in the body. A combination of thorough physical examination, laboratory tests and imaging techniques should be applied and sometimes a venous sampling may come into handy. The technology of somatostatin-receptor functional scintigraphy markedly facilitates the localization of TIO tumor. Patients undergoing complete removal of the causative neoplasm generally have favorable prognoses while a few have been reported to suffer from recurrence and metastasis. For those undetectable or unresectable cases, phosphate supplements and active vitamin D should be administrated and curative intended radiotherapy or ablation is optional.
Calcification, Physiologic
;
Diagnosis
;
Fibroblast Growth Factors
;
Humans
;
Hypophosphatemia
;
Metabolism
;
Neoplasm Metastasis
;
Osteomalacia
;
Paraneoplastic Syndromes
;
Physical Examination
;
Prognosis
;
Radionuclide Imaging
;
Radiotherapy
;
Recurrence
;
Rickets
;
Vitamin D
;
Vitamin D Deficiency
4.Chronic Kidney Disease-Mineral Bone Disorder in Korean Patients: a Report from the KoreaN Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD).
Chang Seong KIM ; Eun Hui BAE ; Seong Kwon MA ; Seung Hyeok HAN ; Kyu Beck LEE ; Joongyub LEE ; Kook Hwan OH ; Dong Wan CHAE ; Soo Wan KIM
Journal of Korean Medical Science 2017;32(2):240-248
This study examined the characteristics of biochemical parameters, bone diseases, and vascular calcification in Korean patients with chronic kidney disease (CKD) not yet on dialysis. Serum levels of fibroblast growth factor 23 (FGF23), intact parathyroid hormone (iPTH), 25-hydroxyvitamin D3 (25D), and 1,25-dihydroxyvitamin D3 (1,25D); lumbar spine, total hip, and femur neck bone mineral densities; and brachial-to-ankle pulse wave velocity (baPWV) representing vascular calcification were measured at baseline for 2,238 CKD patients in the KoreaN Cohort Study for Outcomes in Patients With CKD (KNOW-CKD). Increases in serum FGF23 and iPTH preceded changes in serum calcium and phosphate, similar to Western populations. However, the 25D and 1,25D levels decreased earlier than serum FGF23 or iPTH increased, with a decreased estimated glomerular filtration rate (eGFR) in Korean CKD patients. Vitamin D deficiency occurred in 76.7% of patients with CKD stage 1. Bone mineral densities were lowest in CKD stage 5 (lumbar spine, −0.64 ± 1.67; total hip, −0.49 ± 1.21; femur neck, −1.02 ± 1.25). Osteoporosis was more prevalent in patients with higher CKD stages. The mean baPWV, abdominal aortic calcification (AAC), and coronary calcium score also increased, with declined eGFR. In conclusion, a decline in serum vitamin D levels was observed in early CKD stages before significant increases of FGF23 and iPTH in the Korean CKD population compared with that in Western populations. Increased bone disease and vascular calcification occurred in early-stage CKD.
Bone Density
;
Bone Diseases
;
Calcifediol
;
Calcitriol
;
Calcium
;
Cohort Studies*
;
Dialysis
;
Femur Neck
;
Fibroblast Growth Factors
;
Glomerular Filtration Rate
;
Hip
;
Humans
;
Kidney*
;
Osteoporosis
;
Parathyroid Hormone
;
Pulse Wave Analysis
;
Renal Insufficiency, Chronic*
;
Spine
;
Vascular Calcification
;
Vitamin D
;
Vitamin D Deficiency
5.Skeletal mineralization: mechanisms and diseases
Annals of Pediatric Endocrinology & Metabolism 2019;24(4):213-219
Skeletal mineralization is initiated in matrix vesicles (MVs), the small extracellular vesicles derived from osteoblasts and chondrocytes. Calcium and inorganic phosphate (Pi) taken up by MVs form hydroxyapatite crystals, which propagate on collagen fibrils to mineralize the extracellular matrix. Insufficient calcium or phosphate impairs skeletal mineralization. Because active vitamin D is necessary for intestinal calcium absorption, vitamin D deficiency is a significant cause of rickets/osteomalacia. Chronic hypophosphatemia also results in rickets/osteomalacia. Excessive action of fibroblast growth factor 23 (FGF23), a key regulator of Pi metabolism, leads to renal Pi wasting and impairs vitamin D activation. X-linked hypophosphatemic rickets (XLH) is the most common form of hereditary FGF23-related hypophosphatemia, and enhanced FGF receptor (FGFR) signaling in osteocytes may be involved in the pathogenesis of this disease. Increased extracellular Pi triggers signal transduction via FGFR to regulate gene expression, implying a close relationship between Pi metabolism and FGFR. An anti-FGF23 antibody, burosumab, has recently been developed as a new treatment for XLH. In addition to various forms of rickets/osteomalacia, hypophosphatasia (HPP) is characterized by impaired skeletal mineralization. HPP is caused by inactivating mutations in tissue-nonspecific alkaline phosphatase, an enzyme rich in MVs. The recent development of enzyme replacement therapy using bone-targeting recombinant alkaline phosphatase has improved the prognosis, motor function, and quality of life in patients with HPP. This links impaired skeletal mineralization with various conditions, and unraveling its pathogenesis will lead to more precise diagnoses and effective treatments.
Absorption
;
Alkaline Phosphatase
;
Calcium
;
Chondrocytes
;
Collagen
;
Diagnosis
;
Durapatite
;
Enzyme Replacement Therapy
;
Extracellular Matrix
;
Extracellular Vesicles
;
Familial Hypophosphatemic Rickets
;
Fibroblast Growth Factors
;
Gene Expression
;
Humans
;
Hypophosphatasia
;
Hypophosphatemia
;
Metabolism
;
Miners
;
Osteoblasts
;
Osteocytes
;
Prognosis
;
Quality of Life
;
Receptors, Fibroblast Growth Factor
;
Rickets
;
Signal Transduction
;
Vitamin D
;
Vitamin D Deficiency