1.8p11 myeloproliferative syndrome.
Journal of Experimental Hematology 2013;21(4):1073-1077
The 8p11 myeloproliferative syndrome (EMS) is named as stem cell leukemia/lymphoma syndrome, and is an aggressive neoplasm associated with chromosomal translocations involving the fibroblast growth factor receptor 1 (FGFR1) tyrosine kinase gene on chromosome 8p11-12. EMS is a syndrome characterized by peripheral blood leucocytosis with eosinophilia, myeloid hyperplasia of bone marrow, and T-cell lymphoblastic leukemia/lymphoma. Clinically, EMS is an aggressive disease with a short chronic phase before rapid transformation into acute leukemia. Its prognosis is poor. The only curative option for patients with EMS at this time appears to be bone marrow or stem cell transplantation. At the molecular level, all cases carry a chromosomal abnormality involving the FGFR1 gene at chromosome 8p11. The novel chimeric proteins foster dimerization and ligand-independent activation of FGFR1 tyrosine kinase, subsequently promoting activation of downstream pathways involved in proliferation and malignant transformation of cells. Currently, 13 translocations and 1 insertion have been identified. Here, the current review mainly focuses on molecular genetic features, pathogenic mechanisms and therapy of EMS.
Chromosomes, Human, Pair 8
;
Humans
;
Myeloproliferative Disorders
;
classification
;
genetics
;
pathology
;
Receptor, Fibroblast Growth Factor, Type 1
;
genetics
3.Clinical and gene involved of one case of 8p11 myeloproliferative syndrome with ins(13;8)(q12;p11p23).
Feng ZHOU ; Suning CHEN ; Hongying CHAO ; Ri ZHANG ; Min ZHOU ; Jinlan PAN
Chinese Journal of Hematology 2015;36(4):291-296
OBJECTIVETo improve the understanding of patients with 8p11 myeloproliferative syndrome (EMS) harboring ins(13;8)(q12;p11p23)/ZNF198 -FGFR1.
METHODSWe reported here a 8p11 EMS case and provided more details on the clinical and molecular features of ins(13;8)(q12;p11p23)/ZNF198-FGFR1,full length ZNF198-FGFR1 was cloned by overlap extension PCR method,and the literatures on this topic were reviewed.
RESULTSClinically, the case with ins(13;8)(q12;p11p23)/ZNF198-FGFR1 had distinct hematological and clinical characteristics: hyperleukocytosis, myeloid hyperplasia,widespread adenopathy and lymphoma; Fluorescence in situ hybridization (FISH) disclosed the positive FGFR1 gene rearrangement; Further molecular studies confirmed a mRNA in-frame fusion between exon 17 of the ZNF198 gene and exon 9 of FGFR1 gene ,the full length ZNF198-FGFR1 was composed of a NH2 terminus of ZNF198 including the ZNF and proline-rich domains, whereas the COOH terminus of FGFR1 included 2 tyrosine kinase domains.
CONCLUSIONEMS with ins(13;8)(q12;p11p23)/ZNF198 -FGFR1 was a very rare, distinct myeloproliferative neoplasm, the fusion gene and chimeric protein with constitutive activation of the FGFR1 tyrosine kinase.
Chromosomes, Human, Pair 13 ; Chromosomes, Human, Pair 8 ; DNA-Binding Proteins ; Exons ; Humans ; In Situ Hybridization, Fluorescence ; Myeloproliferative Disorders ; Receptor, Fibroblast Growth Factor, Type 1 ; Receptors, Fibroblast Growth Factor ; Transcription Factors ; Translocation, Genetic
4.8p11 myeloproliferative syndrome with CEP110-FGFR1 fusion in a patient.
Hongying CHAO ; Suning CHEN ; Min ZHOU ; Xuzhang LU ; Xiuwen ZHANG ; Jinlan PAN ; Chunxiao WU ; Ri ZHANG
Chinese Journal of Medical Genetics 2015;32(5):679-682
OBJECTIVE To explore the clinical and laboratory features of a patient with 8p11 myeloproliferative syndrome (EMS) and CEP110-FGFR1 fusion. METHODS Combined bone marrow cytology, fluorescence in situ hybridization, fusion gene detection was used to analyze the patient. RESULTS Clinically, the patient had many features similar to those with chronic myelomonocytic leukemia, which included hyperleukocytosis, marked eosinophilia, monocytosis, myeloid hyperplasia and hyperplasia. Fluorescence in situ hybridization analysis for FGFR1 gene rearrangement was positive. Further study of the mRNA also confirmed an in-frame fusion between exon 38 of the CEP110 gene and exon 9 of FGFR1 gene. CONCLUSION EMS with CEP110-FGFR1 fusion is a very rare and distinct myeloproliferative neoplasm. FISH and molecular studies may improve its diagnosis.
Cell Cycle Proteins
;
genetics
;
Chromosomes, Human, Pair 8
;
Female
;
Humans
;
Middle Aged
;
Myeloproliferative Disorders
;
genetics
;
Oncogene Proteins, Fusion
;
genetics
;
Receptor, Fibroblast Growth Factor, Type 1
;
genetics
5.Fgf8P2A-3×GFP/+: A New Genetic Mouse Model for Specifically Labeling and Sorting Cochlear Inner Hair Cells.
Yi PAN ; Shuting LI ; Shunji HE ; Guangqin WANG ; Chao LI ; Zhiyong LIU ; Mingliang XIANG
Neuroscience Bulletin 2023;39(12):1762-1774
The cochlear auditory epithelium contains two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs). Mouse models for labelling juvenile and adult IHCs or OHCs exist; however, labelling for embryonic and perinatal IHCs or OHCs are lacking. Here, we generated a new knock-in Fgf8P2A-3×GFP/+ (Fgf8GFP/+) strain, in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements. After confirming that GFP expression accurately reflects the expression of Fgf8, we successfully obtained both embryonic and neonatal IHCs with high purity, highlighting the power of Fgf8GFP/+. Furthermore, our fate-mapping analysis revealed, unexpectedly, that IHCs are also derived from inner ear progenitors expressing Insm1, which is currently regarded as an OHC marker. Thus, besides serving as a highly favorable tool for sorting early IHCs, Fgf8GFP/+ will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.
Animals
;
Mice
;
Hair Cells, Auditory, Inner
;
Cochlea/metabolism*
;
Hair Cells, Auditory, Outer/metabolism*
;
Disease Models, Animal
;
Fibroblast Growth Factor 8/metabolism*
6.Characteristic of 8p11 Myeloproliferative Syndrome with Rare Phenotype.
Song XUE ; Huan-Xia XU ; Yong-Ping ZHANG ; Fu-Hong LIU ; Yi-Yan LU ; Fang LI ; Yan-Ping WANG ; Cheng-Cheng WANG ; Xiao-Peng JIA ; Jing-Bo WANG
Journal of Experimental Hematology 2021;29(1):181-187
OBJECTIVE:
To deeply understand the clinical manifestation, laboratory examination characteristics, diagnosis and treatment of an eight p11 myeloproliferative syndrome (EMS) with rare phenotypes.
METHODS:
The clinical and laboratory characteristics and the process of allogeneic hematopoietic stem cell transplantation (allo-HSCT) were summarized in 1 rare EMS case involving T/B/myeloid cells. Meanwhile, 2 similar cases in the previous literature were also discussed.
RESULTS:
The bone marrow examination indicated that the patient with B-cell acute lymphocytic leukemia. The lymph node biopsy showed that the patient was T lymphoblastic/myeloid lymphoma. The 8p11 abnormality was found by the examination of bone marrow chromosomes. The RT-PCR examination showed that the BCR-ABL fused gene was negtive. The FGFR1 breakage was found by using the FISH with FGFR1 probe in lymph node. The Mutation of FMNL3, NBPF1 and RUNX1 genes was found by using the whole exome sequencing. The patient received allo-HSCT under CR2. By the follow-up till to September 2019, the patient survived without the above-mentioned disease.
CONCLUSION
EMS manifest as neoplasms involving T-lineage, B-lineage, and myeloid-lineage simultaneously is extremely rare. Although the FGFR1 gene-targeted therapy can be conducted, allo-HSCT should be actively considered.
Bone Marrow
;
Chromosomes, Human, Pair 8
;
Formins
;
Hematologic Neoplasms
;
Humans
;
Myeloproliferative Disorders/genetics*
;
Phenotype
;
Receptor, Fibroblast Growth Factor, Type 1/genetics*
;
Translocation, Genetic
7.In vitro study on cranial neural crest differentiating into ectomesenchymal cell of the first branchial arch by FGF-8.
Hong-bing JIANG ; Wei-dong TIAN ; Wei TANG ; Lei LIU ; Xiao-dong LI
Chinese Journal of Stomatology 2005;40(4):319-322
OBJECTIVETo investigate the effects of FGF-8 on cranial neural crest cell (CNCC) differentiating into ectomesenchymal cell of the first branchial arch, and determine the appropriate dose and stage of CNCC exposure to FGF-8.
METHODSCranial neural crest explants were cultured in free-serum medium containing modified DMEM/F12 and different doses of FGF-8. The differentiation type of CNCC were determined by in situ hybridization for Hoxa2 and immunocytochemistry for vimentin.
RESULTSPre-emigrating CNCC demonstrated the negative Hoxa2 stain and positive vimentin stain after treated by 100 ug/FGF-8. Both post-emigrating CNCC group and control group were positive for Hoxa2 and vimentin stain.
CONCLUSIONSOn the early stage of CNCC emigration, the first branchial arch phenotype of CNCC could be induced by FGF-8. This experiment could provide in vitro model for study on the mechanism of tooth-jaw regeneration.
Animals ; Branchial Region ; cytology ; Cell Differentiation ; drug effects ; Cells, Cultured ; Cranial Nerves ; cytology ; Female ; Fibroblast Growth Factor 8 ; pharmacology ; Male ; Mesoderm ; cytology ; Mice ; Mice, Inbred Strains ; Neural Crest ; cytology
8.Clinical pathological features of the 8p11 myeloproliferative syndrome.
Zhen YAN ; Bo YANG ; Quan-Shun WANG ; Li-Li WANG ; Xiao-Ping HAN ; Fang REN ; Li YU
Journal of Experimental Hematology 2010;18(5):1321-1326
This study was aimed to investigate the clinico-pathological features, diagnosis and treatment of the 8p11 (eight p11) myeloproliferative syndrome (EMS). Morphological changes of cells were evaluated by bone marrow smear and biopsy. The cell immunophenotypes were analysed by flow cytometry. Karyotypes were determined by conventional cytogenetic method, and bcr/abl fusion gene was detected by reverse transcription-polymerase chain reaction (RT-PCR). The results indicated that EMS was a relatively rare disease characterized by the occurrence of a bcr/abl-negative myeloproliferative disorder and a T-cell lymphoblastic lymphoma (T-LBL). Bone marrow examination showed myeloid hyperplasia or myeloproliferative neoplasm, often accompanied by eosinophilia. Flow cytometric immunophenotyping showed increased myelomonoblasts; cytogenetic analysis showed a translocation at the 8p11 locus; RT-PCR demonstrated non bcr/abl fusion gene. At the molecular level, all cases carried a chromosomal abnormality involving the fibroblast growth factor receptor 1 (FGFR1) at chromosome 8p11. Up to now, 11 partner genes have been identified and associated with FGFR1 rearrangements. The most common partner is ZNF198 on chromosome 13q11-12. Majority of patients terminate in acute myeloid leukemia which is resistant to conventional chemotherapy. Currently, the only curative option appears to be allogeneic hematopoietic stem cell transplantation. In conclusion, EMS is myeloid and lymphoid neoplasm, associates with FGFR1 rearrangements. It is usually misdiagnosed as T-LBL, atypical chronic myeloid leukemia (aCML) or chronic myelogenous-monocytic leukemia (CMML). Timely cytogenetic and molecular biological examination is vital in order to avoid misdiagnosis and mistreatment.
Bone Marrow Cells
;
pathology
;
Chromosomes, Human, Pair 8
;
genetics
;
Humans
;
Male
;
Middle Aged
;
Myeloproliferative Disorders
;
pathology
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
pathology
;
Receptor, Fibroblast Growth Factor, Type 1
;
genetics
9.Molecular mechanism of FGF8b regulation of epithelial-mesenchymal transition in prostate cancer cells.
Benyi FAN ; Guilin WANG ; Fan QI ; Zhuo LI ; Huaizheng LIU
Journal of Central South University(Medical Sciences) 2012;37(7):656-661
OBJECTIVE:
To explore the molecular mechanism of fibroblast growth factor 8b (FGF8b) in promoting epithelial-mesenchymal transition in prostate cancer DU145 cells.
METHODS:
Cells were selected in three groups as follows: a block control group (DU145 cells), a negative control group [DU145 cells transfected with empty plasmid (pcDNA3.1/DU145)], and an experimental group [DU145 cells transfected with FGF8b (FGF8b/DU145)]. The activity of extracellular regulated protein kinases1/2( ERK1/2) pathway was detected by western-blot in the three groups. The FGF8b-DU145 cells and DU145 cells were cultured with PD98059 (an ERK kinase inhibitor) to observe microscopically the morphology changes within the cells. The experimental samples were also divided into four groups: FGF8b/DU145 cells cultured with 2% FBS (Group A); FGF8b/DU145 cells cultured with 2% FBS+PD98059 (50 μmol/L) (Group B); DU145 cells cultured with 2% FBS (Group C); DU145 cells cultured with FBS+PD98059 (50 μmol/L) (Group D). The expression of epithelial- mesenchymal transition (EMT) markers (E-cadherin, vimentin) were detected by western-blot analysis and the cell's mobility were detected by the Transwell chamber.
RESULTS:
The activity of ERK1/2 in the experimental group was significantly higher than that in the other two control groups; when ERK kinase inhibitor PD98059 was added to FGF8b/ DU145 cells, the expression of epithelial marker E-cadherin protein was significantly increased in group B compared with that in the group A (P<0.05). The expression of mesenchymal marker vimentin protein was significantly reduced in group B compared with that in group A (P<0.05). The cell migration assay suggested that cell migration was markedly decreased in group B (P<0.05) compared with that in group A.
CONCLUSION
EMT in prostate cancer induced by FGF8b can be mediated by ERK kinase pathway, in which mitogen-activated/extraceluer signal regulated kinase 1 (MEK1) may be a key factor. MEK1 could be an effective target in regulating the invasion and migration of prostate cancer.
Epithelial-Mesenchymal Transition
;
genetics
;
Fibroblast Growth Factor 8
;
genetics
;
metabolism
;
Flavonoids
;
pharmacology
;
Humans
;
MAP Kinase Kinase 1
;
metabolism
;
MAP Kinase Signaling System
;
physiology
;
Male
;
Neoplasm Invasiveness
;
Neoplasm Metastasis
;
Prostatic Neoplasms
;
genetics
;
metabolism
;
pathology
;
Transfection
;
Tumor Cells, Cultured
10.FGF8 induces epithelial-mesenchymal transition and promotes metastasis in oral squamous cell carcinoma.
Yilong HAO ; Yanxuan XIAO ; Xiaoyu LIAO ; Shuya TANG ; Xiaoyan XIE ; Rui LIU ; Qianming CHEN
International Journal of Oral Science 2021;13(1):6-6
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide, and with 354 864 new cases each year. Cancer metastasis, recurrence, and drug resistance are the main causes to cripples and deaths of OSCC patients. As potent growth factors, fibroblast growth factors (FGFs) are frequently susceptible to being hijacked by cancer cells. In this study, we show that FGF8 is upregulated in OSCC tissues and high FGF8 expression is related with a set of clinicopathologic parameters, including age, drinking, and survival time. FGF8 treatment enhances the invasive capability of OSCC cells. Lentivirus-based FGF8 expression promotes OSCC metastasis in a mouse lung metastasis model. Further, mechanistic study demonstrates that FGF8 induces epithelial-mesenchymal transition (EMT) in OSCC cells. These results highlight a pro-metastatic function of FGF8, and underscore the role of FGF8 in OSCC development.
Animals
;
Carcinoma, Squamous Cell
;
Cell Line, Tumor
;
Cell Movement
;
Epithelial-Mesenchymal Transition
;
Fibroblast Growth Factor 8
;
Head and Neck Neoplasms
;
Humans
;
Mice
;
Mouth Neoplasms
;
Neoplasm Recurrence, Local
;
Squamous Cell Carcinoma of Head and Neck