1.Effects of Hypoxia on the Growth and Development of the Fetal Ovine Hepatocytes in Primary Culture.
Li CAO ; Juan WANG ; Le BO ; Da Wei LI ; Na YIN ; An Wen ZHOU ; Cai Ping MAO
Biomedical and Environmental Sciences 2019;32(8):592-601
OBJECTIVE:
To investigate the development and characterizations of the hepatocytes isolated from fetal ovine and to determine the effect of hypoxia on their growth and metabolism.
METHODS:
Fresh hepatocytes were isolated from the liver of fetal ovine at late gestation, cultured in specific media, and exposed to normoxia (21% O2) or hypoxia (2% O2). The cellular characteristics and population purity were identified by immunocytochemistry and flow cytometry (FCM). The effects of hypoxia on cell cycle and apoptosis of the hepatocytes were evaluated by FCM, whereas the cellular ultrastructure changes were examined with a transmission electron microscope.
RESULTS:
The cell purity of hepatocytes was over 95%. Under hypoxia exposure, the hepatocytes showed a gradual increase in proportion at the S phase and in proliferative index, followed with a compatible increase in apoptosis and progressively decreased cell viability. Additionally, the organelles of the hepatocytes demonstrated dramatic changes, including swelling of mitochondria, disorder in cristae arrangement, expansion of endoplasmic reticulum, and a large number of circular lipid droplets emerging in the cytoplasm.
CONCLUSION
Fetal ovine hepatocytes could be primarily cultured in a short-term culture system with a high purity of over 95% and with their preserved original characteristics. Hypoxia could induce changes in ultrastructural and inhibit the proliferation of cultured fetal ovine hepatocytes through apoptotic mechanisms.
Anaerobiosis
;
Animals
;
Cell Culture Techniques
;
Fetus
;
physiology
;
Hepatocytes
;
physiology
;
Oxygen
;
analysis
;
Sheep
;
physiology
2.The fetal wound healing: a review.
Tai Suk ROH ; Dong Kyun RAH ; Beyoung Yun PARK
Yonsei Medical Journal 2001;42(6):630-633
Fetal wound healing has drawn the attention of many researchers from diverse background and specialties. Fetal wound healing is unique and differs from postnatal healing in that fetal skin wounds heal rapidly without scar formation. If the mechanism underlying such phenomenon can be elucidated, it will be serve as a significant milestone in the study of wound healing. Furthermore, the implications for therapeutic applications in wound management and in diseases where scarring is the basic pathogenetic mechanism would be immense. Rather than to list the results and conflicting data of numerous studies, this article hopes to provide a general overview of the recent developments.
Animal
;
Cell Adhesion Molecules/physiology
;
Collagen/physiology
;
Extracellular Matrix/physiology
;
Fetus/*physiology
;
Growth Substances/physiology
;
Human
;
*Wound Healing
3.Biological characteristics of human fetal osteoblastic 1.19 cell line.
Wen-Ming CHEN ; Zi-Xing CHEN ; Jian-Nong CEN ; Jun HE ; Xue-Li JIAO ; Ya-Fang WU ; Jun ZHANG ; Qiao-Cheng QIU ; Lan DAI
Journal of Experimental Hematology 2008;16(2):339-344
This study was aimed to investigate the biological characteristics of osteoblasts and their hematopoietic supportive function by using human fetal osteoblastic cell line 1.19 (hFOBs) as a model. The pluripotency markers (Oct-4, Rex-1, hTERT) of hFOBs were analyzed by RT-PCR, the multilineage differentiation experiments were conducted in vitro. Flow cytometry (FCM) was used to identify the surface markers of hFOBs, and RT-PCR was used to analyze their hematopoietic cytokine expression in comparison with bone marrow mesenchymal stem cell (BM-MSC). The results showed that hFOBs expressed several ESC pluripotency markers including Oct-4 and Rex-1, except hTERT. Moreover, hFOBs could also undergo multilineage differentiation into the mesodermal lineages of adipocytic cell types in addition to its predetermined pathway, the mature osteoblast. Both hFOBs and BM-MSC expressed CD44, CD73 (SH3), CD105 (SH2) and CD90 (Thy1), and lack expression of CD34, CD45, or HLA-DR surface molecules. In addition, both hFOBs and BM-MSC expressed SCF, IL-6, and SDF-1alpha mRNA, but only hFOBs could express GM-CSF and G-CSF. It is concluded that human fetal osteoblastic cell line 1.19 may provide a good model to study the osteoblastic regulation role in hematopoiesis in vitro.
Cell Differentiation
;
physiology
;
Cell Line
;
Fetus
;
Hematopoiesis
;
physiology
;
Humans
;
Mesenchymal Stromal Cells
;
cytology
;
physiology
;
Models, Biological
;
Osteoblasts
;
cytology
;
physiology
4.Gene therapy of scarring: a lesson learned from fetal scarless wound healing.
Wei LIU ; Yilin CAO ; Michael T LONGAKER
Yonsei Medical Journal 2001;42(6):634-645
Cutaneous wounding in adult humans and higher vertebrate animals results in scar formation. In contrast, both human and animal fetuses, at early gestational ages, exhibit skin wound healing without scarring. This distinction suggests that the repair of adult wounds by skin regeneration, rather than by fibrosis, may be achieved if adult wounds can be modified to mimic the healing process of fetal wounds. The development of gene therapy offers the possibility to specifically enhance or block the gene expression of cytokines and extracellular molecules, and thus convert adult wound healing into a healing process more similar to tissue regeneration. This article reviews the characteristics of fetal wound repair focusing on cytokine profiles and the inflammatory response to dermal injury. Also included are new developments in gene transfer techniques as well as their application in wound healing. Finally, the authors propose possible strategies of wound gene therapy, to reduce wound scarring and to promote tissue regeneration.
Animal
;
Cicatrix/*prevention & control
;
Fetus/physiology
;
*Gene Therapy
;
Human
;
Wound Healing/physiology
5.Scarless fetal wound healing and its mechanism.
Chinese Journal of Burns 2014;30(6):499-502
Scarless healing is considered as the most ideal mode of wound repair. This ability generally exists in the early period of mammalian embryos, however it gradually turns to scar healing with the development of the embryos. This phenomenon is the result of the interaction of multiple biological functions, and the mechanism is still uncertain. This article deals with a systematical review of literature concerning the mechanism of scarless healing based on the recent experimental studies, hoping to provide evidence for the treatment of wounds to realize scarless healing in adult.
Adult
;
Animals
;
Cicatrix
;
prevention & control
;
Fetus
;
physiology
;
Humans
;
Wound Healing
;
physiology
6.Comparative study on motility of the cultured fetal and neonatal dermal fibroblasts in extracellular matrix.
Jong Chul PARK ; Bong Joo PARK ; Hwa SUH ; Beyoung Yun PARK ; Dong Kyun RAH
Yonsei Medical Journal 2001;42(6):587-594
One of the differences between fetal and adult skin healing is the ability of fetal wounds heal without contraction and scar formation. Extracellular matrix (ECM) provides a substratum for cells adhesion, migration, and proliferation and can directly influence the form and function of cells. As motility is essential for many important biological events, including wound healing, inflammatory response, embryonic development, and tumor metastasis, this study was designed to compare the motilities cultured dermal fetal and neonatal fibroblasts in the extracellular matrix. The motility of cultured fetal and neonatal fibroblasts was compared using a video-microscopy system that was developed in combination with a self-designed CO2 mini-incubator. To determine migration speed, cells were viewed with a 4X phase-contrast lens and video recorded. Images were captured using a color CCD camera and saved in 8-bit full-color mode. We found that cultured fetal fibroblasts move faster than neonatal fibroblast on type I collagen (fetal fibroblast, 15.1 micrometer/hr; neonatal fibroblast, 13.7 micrometer/hr), and in fibronectin (fetal fibroblast, 13.2 micrometer/hr; neonatal fibroblast, 13.0 micrometer/hr) and hyaluronic acid (fetal fibroblast, 11 micrometer/hr; neonatal fibroblast, 9.8 micrometer/hr).
Cell Movement
;
Cells, Cultured
;
Comparative Study
;
Extracellular Matrix/*physiology
;
Fetus/physiology
;
Fibroblasts/*physiology
;
Human
;
Infant, Newborn
;
Skin/cytology/*embryology
;
*Skin Physiology
7.Tissue-specific expression of Na+ -H+ exchanger isoforms at two developmental stages of human fetus.
Wan-Min LIN ; Xian-Hua CHEN ; Rong XU ; Xuan LIU ; Ping XU
Acta Physiologica Sinica 2003;55(1):79-82
Na(+)-H(+) exchangers (NHE) are major membrane proteins that have been identified as signal transduction mediators in the regulation of cell differentiation and important membrane ion transporters in the regulation of the intercellular pH and the cell volume. NHE are composed of at least six isoforms and activated in growth factor-regulated cell differentiation. However, little is known about the differential regulation of NHE expression in the development. In the present study, we studied developmental regulation of the expression of NHE isoforms in human fetal tissues by comparing the expression of various isoforms between two developmental stages, i.e., week 11 (11 W) and week 16 (16 W). The results demonstrated that NHE1 transcripts were expressed ubiquitously. In comparison to the expression at 16 W, the level of NHE1 transcripts was low and varied significantly in a tissue-specific pattern at 11 W, suggesting that the house-keeping function of MHE1 occurs at 11 W or earlier and becomes well established at least as early as at 16 W. The tissue-specifically restricted expression of NHE2 and NHE3 was regulated at 11 W and 16 W in an opposite tendency, supporting the overlapping relationship between NHE2 and NHE3 in the tissue distribution as reported in adults. NHE5 expression was relatively ubiquitous at 11 W and became restricted in the cerebellum at 16 W, suggesting that the restrictive expression of NHE5 in the brain occurs later than that of other isoforms. The present study demonstrates a space time-dependent regulation of the tissue-specific expression pattern of NHE isoforms during human development between 11 W and 16 W. The results also suggest that at 16 W or earlier the expression pattern of developing tissues becomes similar to that of adult tissues. The observed developmental regulation of NHE expression provides a molecular basis for further study of the function and regulation of NHE gene during development.
Fetus
;
embryology
;
metabolism
;
Gene Expression Regulation, Developmental
;
physiology
;
Humans
;
Organ Specificity
;
Protein Isoforms
;
metabolism
;
physiology
;
RNA, Messenger
;
metabolism
;
physiology
;
Sodium-Hydrogen Exchangers
;
metabolism
;
physiology
;
Tissue Distribution
8.Development of elastin layers in the aortic wall of human fetuses.
Seh Hoon SONG ; Hyong Woo PARK
Yonsei Medical Journal 1992;33(4):337-343
The presence of elastin layers in the aortic walls of twelve human fetuses was confirmed with scanning electron microscope pictures after hot alkali treatment and histochemical examination. In addition, the number of elastin layers in aortic walls of 5 different segments were compared in fetuses of varying ages. Aldehyde fuchsin stained slides of elastin ascending aortas showed a range between 27 and 55 layers of elastin in fetuses of 8 weeks to 32 weeks. However, in the lower abdominal aortas, elastin layers decreased from 28 to only 3 layers for fetuses of the same age. Furthermore, as elastin layers decreased from ascending aorta to abdominal aorta with the progression of fetal life, similar changes in the elastin lamellae were observed. These results suggest that while aortas grow rapidly in length, the medial elastin thickens slowly, perhaps due to slow development of hydrodynamic forces and pressures. Also the adventitial elastin appears to lose out gradually along the length from ascending aorta to abdominal aorta.
Aorta/*embryology/metabolism/ultrastructure
;
Elastin/*metabolism
;
Fetus/anatomy & histology/*metabolism/physiology
;
Human
9.Tongue Growth during Prenatal Development in Korean Fetuses and Embryos.
Soo Jeong HONG ; Bong Geun CHA ; Yeon Sook KIM ; Suk Keun LEE ; Je Geun CHI
Journal of Pathology and Translational Medicine 2015;49(6):497-510
BACKGROUND: Prenatal tongue development may affect oral-craniofacial structures, but this muscular organ has rarely been investigated. METHODS: In order to document the physiology of prenatal tongue growth, we histologically examined the facial and cranial base structures of 56 embryos and 106 fetuses. RESULTS: In Streeter's stages 13-14 (fertilization age [FA], 28 to 32 days), the tongue protruded into the stomodeal cavity from the retrohyoid space to the cartilaginous mesenchyme of the primitive cranial base, and in Streeter's stage 15 (FA, 33 to 36 days), the tongue rapidly swelled and compressed the cranial base to initiate spheno-occipital synchondrosis and continued to swell laterally to occupy most of the stomodeal cavity in Streeter's stage 16-17 (FA, 37 to 43 days). In Streeter's stage 18-20 (FA, 44 to 51 days), the tongue was vertically positioned and filled the posterior nasopharyngeal space. As the growth of the mandible and maxilla advanced, the tongue was pulled down and protruded anteriorly to form the linguomandibular complex. Angulation between the anterior cranial base (ACB) and the posterior cranial base (PCB) was formed by the emerging tongue at FA 4 weeks and became constant at approximately 124degrees-126degrees from FA 6 weeks until birth, which was consistent with angulations measured on adult cephalograms. CONCLUSIONS: The early clockwise growth of the ACB to the maxillary plane became harmonious with the counter-clockwise growth of the PCB to the tongue axis during the early prenatal period. These observations suggest that human embryonic tongue growth affects ACB and PCB angulation, stimulates maxillary growth, and induces mandibular movement to achieve the essential functions of oral and maxillofacial structures.
Adult
;
Axis, Cervical Vertebra
;
Embryonic Structures*
;
Fetus*
;
Humans
;
Mandible
;
Maxilla
;
Mesoderm
;
Parturition
;
Physiology
;
Skull Base
;
Tongue*
10.The pathogenesis of craniosynostosis in the fetus.
Stephen M WARREN ; Michael T LONGAKER
Yonsei Medical Journal 2001;42(6):646-659
Craniosynostosis occurs in approximately 1:2000 live births. It may affect the coronal, sagittal, metopic and lambdoid sutures in isolation or in combination. Although non-syndromic synostoses are more common, over 150 genetic syndromes have been identified. Recent advances in genetic mapping have linked chromosomal mutations with craniosynostotic syndromes. Despite the identification of these genetic mutations, the fundamental biomolecular mechanisms mediating cranial suture biology remain unknown. Today, many laboratories are investigating murine cranial suture biology as a model for human cranial suture development and fusion. Normal murine cranial suture biology is very complex, but evidence suggests that the dura mater provides the biomolecular blueprints (e.g. the soluble growth factors), which guide the fate of the pleuripotent osteogenic fronts. While our knowledge of these dura-derived signals has increased dramatically in the last decade, we have barely begun to understand the fundamental mechanisms that mediate cranial suture fusion or patency. Interestingly, recent advances in both premature human and programmed murine suture fusion have revealed unexpected results, and have generated more questions than answers.
Animal
;
Craniosynostoses/*etiology/genetics/surgery
;
Fetal Development
;
Fetus/*physiology
;
Human
;
Mutation