1.Effects of Hypoxia on the Growth and Development of the Fetal Ovine Hepatocytes in Primary Culture.
Li CAO ; Juan WANG ; Le BO ; Da Wei LI ; Na YIN ; An Wen ZHOU ; Cai Ping MAO
Biomedical and Environmental Sciences 2019;32(8):592-601
OBJECTIVE:
To investigate the development and characterizations of the hepatocytes isolated from fetal ovine and to determine the effect of hypoxia on their growth and metabolism.
METHODS:
Fresh hepatocytes were isolated from the liver of fetal ovine at late gestation, cultured in specific media, and exposed to normoxia (21% O2) or hypoxia (2% O2). The cellular characteristics and population purity were identified by immunocytochemistry and flow cytometry (FCM). The effects of hypoxia on cell cycle and apoptosis of the hepatocytes were evaluated by FCM, whereas the cellular ultrastructure changes were examined with a transmission electron microscope.
RESULTS:
The cell purity of hepatocytes was over 95%. Under hypoxia exposure, the hepatocytes showed a gradual increase in proportion at the S phase and in proliferative index, followed with a compatible increase in apoptosis and progressively decreased cell viability. Additionally, the organelles of the hepatocytes demonstrated dramatic changes, including swelling of mitochondria, disorder in cristae arrangement, expansion of endoplasmic reticulum, and a large number of circular lipid droplets emerging in the cytoplasm.
CONCLUSION
Fetal ovine hepatocytes could be primarily cultured in a short-term culture system with a high purity of over 95% and with their preserved original characteristics. Hypoxia could induce changes in ultrastructural and inhibit the proliferation of cultured fetal ovine hepatocytes through apoptotic mechanisms.
Anaerobiosis
;
Animals
;
Cell Culture Techniques
;
Fetus
;
physiology
;
Hepatocytes
;
physiology
;
Oxygen
;
analysis
;
Sheep
;
physiology
2.The fetal wound healing: a review.
Tai Suk ROH ; Dong Kyun RAH ; Beyoung Yun PARK
Yonsei Medical Journal 2001;42(6):630-633
Fetal wound healing has drawn the attention of many researchers from diverse background and specialties. Fetal wound healing is unique and differs from postnatal healing in that fetal skin wounds heal rapidly without scar formation. If the mechanism underlying such phenomenon can be elucidated, it will be serve as a significant milestone in the study of wound healing. Furthermore, the implications for therapeutic applications in wound management and in diseases where scarring is the basic pathogenetic mechanism would be immense. Rather than to list the results and conflicting data of numerous studies, this article hopes to provide a general overview of the recent developments.
Animal
;
Cell Adhesion Molecules/physiology
;
Collagen/physiology
;
Extracellular Matrix/physiology
;
Fetus/*physiology
;
Growth Substances/physiology
;
Human
;
*Wound Healing
3.Biological characteristics of human fetal osteoblastic 1.19 cell line.
Wen-Ming CHEN ; Zi-Xing CHEN ; Jian-Nong CEN ; Jun HE ; Xue-Li JIAO ; Ya-Fang WU ; Jun ZHANG ; Qiao-Cheng QIU ; Lan DAI
Journal of Experimental Hematology 2008;16(2):339-344
This study was aimed to investigate the biological characteristics of osteoblasts and their hematopoietic supportive function by using human fetal osteoblastic cell line 1.19 (hFOBs) as a model. The pluripotency markers (Oct-4, Rex-1, hTERT) of hFOBs were analyzed by RT-PCR, the multilineage differentiation experiments were conducted in vitro. Flow cytometry (FCM) was used to identify the surface markers of hFOBs, and RT-PCR was used to analyze their hematopoietic cytokine expression in comparison with bone marrow mesenchymal stem cell (BM-MSC). The results showed that hFOBs expressed several ESC pluripotency markers including Oct-4 and Rex-1, except hTERT. Moreover, hFOBs could also undergo multilineage differentiation into the mesodermal lineages of adipocytic cell types in addition to its predetermined pathway, the mature osteoblast. Both hFOBs and BM-MSC expressed CD44, CD73 (SH3), CD105 (SH2) and CD90 (Thy1), and lack expression of CD34, CD45, or HLA-DR surface molecules. In addition, both hFOBs and BM-MSC expressed SCF, IL-6, and SDF-1alpha mRNA, but only hFOBs could express GM-CSF and G-CSF. It is concluded that human fetal osteoblastic cell line 1.19 may provide a good model to study the osteoblastic regulation role in hematopoiesis in vitro.
Cell Differentiation
;
physiology
;
Cell Line
;
Fetus
;
Hematopoiesis
;
physiology
;
Humans
;
Mesenchymal Stromal Cells
;
cytology
;
physiology
;
Models, Biological
;
Osteoblasts
;
cytology
;
physiology
4.Scarless fetal wound healing and its mechanism.
Chinese Journal of Burns 2014;30(6):499-502
Scarless healing is considered as the most ideal mode of wound repair. This ability generally exists in the early period of mammalian embryos, however it gradually turns to scar healing with the development of the embryos. This phenomenon is the result of the interaction of multiple biological functions, and the mechanism is still uncertain. This article deals with a systematical review of literature concerning the mechanism of scarless healing based on the recent experimental studies, hoping to provide evidence for the treatment of wounds to realize scarless healing in adult.
Adult
;
Animals
;
Cicatrix
;
prevention & control
;
Fetus
;
physiology
;
Humans
;
Wound Healing
;
physiology
5.Gene therapy of scarring: a lesson learned from fetal scarless wound healing.
Wei LIU ; Yilin CAO ; Michael T LONGAKER
Yonsei Medical Journal 2001;42(6):634-645
Cutaneous wounding in adult humans and higher vertebrate animals results in scar formation. In contrast, both human and animal fetuses, at early gestational ages, exhibit skin wound healing without scarring. This distinction suggests that the repair of adult wounds by skin regeneration, rather than by fibrosis, may be achieved if adult wounds can be modified to mimic the healing process of fetal wounds. The development of gene therapy offers the possibility to specifically enhance or block the gene expression of cytokines and extracellular molecules, and thus convert adult wound healing into a healing process more similar to tissue regeneration. This article reviews the characteristics of fetal wound repair focusing on cytokine profiles and the inflammatory response to dermal injury. Also included are new developments in gene transfer techniques as well as their application in wound healing. Finally, the authors propose possible strategies of wound gene therapy, to reduce wound scarring and to promote tissue regeneration.
Animal
;
Cicatrix/*prevention & control
;
Fetus/physiology
;
*Gene Therapy
;
Human
;
Wound Healing/physiology
6.Comparative study on motility of the cultured fetal and neonatal dermal fibroblasts in extracellular matrix.
Jong Chul PARK ; Bong Joo PARK ; Hwa SUH ; Beyoung Yun PARK ; Dong Kyun RAH
Yonsei Medical Journal 2001;42(6):587-594
One of the differences between fetal and adult skin healing is the ability of fetal wounds heal without contraction and scar formation. Extracellular matrix (ECM) provides a substratum for cells adhesion, migration, and proliferation and can directly influence the form and function of cells. As motility is essential for many important biological events, including wound healing, inflammatory response, embryonic development, and tumor metastasis, this study was designed to compare the motilities cultured dermal fetal and neonatal fibroblasts in the extracellular matrix. The motility of cultured fetal and neonatal fibroblasts was compared using a video-microscopy system that was developed in combination with a self-designed CO2 mini-incubator. To determine migration speed, cells were viewed with a 4X phase-contrast lens and video recorded. Images were captured using a color CCD camera and saved in 8-bit full-color mode. We found that cultured fetal fibroblasts move faster than neonatal fibroblast on type I collagen (fetal fibroblast, 15.1 micrometer/hr; neonatal fibroblast, 13.7 micrometer/hr), and in fibronectin (fetal fibroblast, 13.2 micrometer/hr; neonatal fibroblast, 13.0 micrometer/hr) and hyaluronic acid (fetal fibroblast, 11 micrometer/hr; neonatal fibroblast, 9.8 micrometer/hr).
Cell Movement
;
Cells, Cultured
;
Comparative Study
;
Extracellular Matrix/*physiology
;
Fetus/physiology
;
Fibroblasts/*physiology
;
Human
;
Infant, Newborn
;
Skin/cytology/*embryology
;
*Skin Physiology
7.Tissue-specific expression of Na+ -H+ exchanger isoforms at two developmental stages of human fetus.
Wan-Min LIN ; Xian-Hua CHEN ; Rong XU ; Xuan LIU ; Ping XU
Acta Physiologica Sinica 2003;55(1):79-82
Na(+)-H(+) exchangers (NHE) are major membrane proteins that have been identified as signal transduction mediators in the regulation of cell differentiation and important membrane ion transporters in the regulation of the intercellular pH and the cell volume. NHE are composed of at least six isoforms and activated in growth factor-regulated cell differentiation. However, little is known about the differential regulation of NHE expression in the development. In the present study, we studied developmental regulation of the expression of NHE isoforms in human fetal tissues by comparing the expression of various isoforms between two developmental stages, i.e., week 11 (11 W) and week 16 (16 W). The results demonstrated that NHE1 transcripts were expressed ubiquitously. In comparison to the expression at 16 W, the level of NHE1 transcripts was low and varied significantly in a tissue-specific pattern at 11 W, suggesting that the house-keeping function of MHE1 occurs at 11 W or earlier and becomes well established at least as early as at 16 W. The tissue-specifically restricted expression of NHE2 and NHE3 was regulated at 11 W and 16 W in an opposite tendency, supporting the overlapping relationship between NHE2 and NHE3 in the tissue distribution as reported in adults. NHE5 expression was relatively ubiquitous at 11 W and became restricted in the cerebellum at 16 W, suggesting that the restrictive expression of NHE5 in the brain occurs later than that of other isoforms. The present study demonstrates a space time-dependent regulation of the tissue-specific expression pattern of NHE isoforms during human development between 11 W and 16 W. The results also suggest that at 16 W or earlier the expression pattern of developing tissues becomes similar to that of adult tissues. The observed developmental regulation of NHE expression provides a molecular basis for further study of the function and regulation of NHE gene during development.
Fetus
;
embryology
;
metabolism
;
Gene Expression Regulation, Developmental
;
physiology
;
Humans
;
Organ Specificity
;
Protein Isoforms
;
metabolism
;
physiology
;
RNA, Messenger
;
metabolism
;
physiology
;
Sodium-Hydrogen Exchangers
;
metabolism
;
physiology
;
Tissue Distribution
8.Development of elastin layers in the aortic wall of human fetuses.
Seh Hoon SONG ; Hyong Woo PARK
Yonsei Medical Journal 1992;33(4):337-343
The presence of elastin layers in the aortic walls of twelve human fetuses was confirmed with scanning electron microscope pictures after hot alkali treatment and histochemical examination. In addition, the number of elastin layers in aortic walls of 5 different segments were compared in fetuses of varying ages. Aldehyde fuchsin stained slides of elastin ascending aortas showed a range between 27 and 55 layers of elastin in fetuses of 8 weeks to 32 weeks. However, in the lower abdominal aortas, elastin layers decreased from 28 to only 3 layers for fetuses of the same age. Furthermore, as elastin layers decreased from ascending aorta to abdominal aorta with the progression of fetal life, similar changes in the elastin lamellae were observed. These results suggest that while aortas grow rapidly in length, the medial elastin thickens slowly, perhaps due to slow development of hydrodynamic forces and pressures. Also the adventitial elastin appears to lose out gradually along the length from ascending aorta to abdominal aorta.
Aorta/*embryology/metabolism/ultrastructure
;
Elastin/*metabolism
;
Fetus/anatomy & histology/*metabolism/physiology
;
Human
9.Immortalization of human articular chondrocytes and induction of their phenotype.
Qingyi HE ; Qihong LI ; Liu YANG ; Jianzhong XU
Chinese Medical Journal 2003;116(9):1351-1356
OBJECTIVETo immortalize human articular chondrocytes (HACs) using gene transfection and to maintain stable phenotype of transformed HACs after induction.
METHODSHACs were transfected with the retroviral vector pLXSN encoding human papillomavirus 16E7 (HPV16E7), and the transformed clones were sorted and proliferated. Karyotype analysis, clone forming tests and nude mice tumor forming tests were applied to check the characteristics of the transformation. Type II collagen of transformed chondrocytes was inducted with free serum medium (FSM) supplemented with nutridoma-sp and ascorbate.
RESULTSImmortalized HACs were isolated with fifty passages achieved. The HPV16E7 transformed cells were confirmed to be benign. Induction of FSM with nutridoma-sp and ascorbate promoted type II collagen of transformed chondrocytes to the high levels of normal chondrocytes.
CONCLUSIONHACs transformed with HPV16E7 survive for long periods in vitro, and type II collagen can maintain stability after induction.
Cells, Cultured ; Chondrocytes ; physiology ; Collagen Type II ; analysis ; Fetus ; Humans ; Knee Joint ; cytology ; Phenotype ; Transfection
10.Glucose metabolism and evaluation of hypoglycemia in neonates.
Korean Journal of Pediatrics 2007;50(3):223-229
The fetus is completely dependent on mother for glucose and other nutrient transfer across the placenta. At birth, when the maternal supply is discontinued, the neonate must adjust to an independent existence. The changes in the neonate's glucose homeostasis during this transition to the extrauterine environment are influenced by the mother's metabolism and intrinsic fetal and placental problems. Maturation of carbohydrate homeostasis results from a balance between substrate availability and coordination of developing hormonal, enzymatic, and neural systems. These mechanisms may not be fully developed in neonates, so the neonate is vulnerable to carbohydrate disequilibrium resulting in damage to the central nervous system. Hypoglycemia is a relatively common metabolic problem seen during newborn care. However its definition, management and long term sequalae remain controversial. Hyporglycemia occurs frequently as a transient disorder with excellent prognosis. It also may persist and recur and cause permanent neurological complications. Although the key to effective treatment of hypoglycemia is diagnostic specific, the maintenance of euglycemia is critical to the preservation of central nervous system function. This article discusses physiology of perinatal glucose homeostasis, focusing on evaluation and treatment of hypoglycemia.
Central Nervous System
;
Fetus
;
Glucose*
;
Homeostasis
;
Humans
;
Hypoglycemia*
;
Infant, Newborn*
;
Metabolism*
;
Mothers
;
Parturition
;
Physiology
;
Placenta
;
Prognosis