1.Effect of Mycobacterium phlei F.U.36 suspended liquor on culture and proliferation of dendritic cells derived from human umbilical cord blood in vitro.
Journal of Experimental Hematology 2007;15(6):1257-1260
To investigate the effect of mycobacterium phlei F.U.36 suspended liquor (Utilin"s", U) on the culture and proliferation of dendritic cells (DCs) derived from human umbilical cord blood in vitro, the mononuclear cells (MNCs) were isolated from human umbilical cord blood and cultured with RPMI 1640 in the control group. Test groups consisted of Utilin"s" group (only Utilin"s"), GTI group (GM-CSF, TNF-alpha, IL-4) and GTIU group (GM-CSF, TNF-alpha, IL-4 and Utilin"s"). MNCs in all test groups were cultured with RPMI-1640. The growth of DCs was observed by the light microscopy, the phenotypes of DCs were determined by flow cytometry on the 10th day of culture, and some harvest cells were stained with Wright-Giemsa, then observed and photographed under the oil immersion objective. The results showed that the test groups all displayed some number of typical DCs; both CD1a positive cell rate and HLA-DR positive cell rate of the Utilin"s" group were higher than those of the control; HLA-DR positive cell rate of GTIU group increased most significantly and much higher than that of the GTI group. It is concluded that mycobacterium phlei F.U.36 not only promotes the proliferation of DCs derived from human umbilical cord blood in vitro, but also co-operates with rhGM-CSF, rhTNF-alpha and rhIL-4 in promoting the maturity of DCs.
Cell Proliferation
;
Cells, Cultured
;
Dendritic Cells
;
cytology
;
Fetal Blood
;
cytology
;
Humans
;
Mycobacterium phlei
;
physiology
2.Isolation and characterization of canine umbilical cord blood-derived mesenchymal stem cells.
Min Soo SEO ; Yun Hyeok JEONG ; Jeung Ran PARK ; Sang Bum PARK ; Kyoung Hwan RHO ; Hyung Sik KIM ; Kyung Rok YU ; Seung Hee LEE ; Ji Won JUNG ; Yong Soon LEE ; Kyung Sun KANG
Journal of Veterinary Science 2009;10(3):181-187
Human umbilical cord blood-derived mesenchymal stem cells (MSCs) are known to possess the potential for multiple differentiations abilities in vitro and in vivo. In canine system, studying stem cell therapy is important, but so far, stem cells from canine were not identified and characterized. In this study, we successfully isolated and characterized MSCs from the canine umbilical cord and its fetal blood. Canine MSCs (cMSCs) were grown in medium containing low glucose DMEM with 20% FBS. The cMSCs have stem cells expression patterns which are concerned with MSCs surface markers by fluorescence-activated cell sorter analysis. The cMSCs had multipotent abilities. In the neuronal differentiation study, the cMSCs expressed the neuronal markers glial fibrillary acidic protein (GFAP), neuronal class III beta tubulin (Tuj-1), neurofilament M (NF160) in the basal culture media. After neuronal differentiation, the cMSCs expressed the neuronal markers Nestin, GFAP, Tuj-1, microtubule-associated protein 2, NF160. In the osteogenic & chondrogenic differentiation studies, cMSCs were stained with alizarin red and toluidine blue staining, respectively. With osteogenic differentiation, the cMSCs presented osteoblastic differentiation genes by RT-PCR. This finding also suggests that cMSCs might have the ability to differentiate multipotentially. It was concluded that isolated MSCs from canine cord blood have multipotential differentiation abilities. Therefore, it is suggested that cMSCs may represent a be a good model system for stem cell biology and could be useful as a therapeutic modality for canine incurable or intractable diseases, including spinal cord injuries in future regenerative medicine studies.
Animals
;
*Cell Differentiation
;
Chondrogenesis
;
Dogs/blood/*physiology
;
Fetal Blood/*cytology
;
Mesenchymal Stem Cells/*cytology
;
Neurons/cytology
;
Osteogenesis
3.Separation and cryopreservation of cord blood mononuclear cells.
Jiong-Cai LAN ; Zhong LIU ; Mao-Zhou GAN ; Qiang CHEN ; Yin-Zhe ZHANG ; Qing-Bao MENG
Journal of Experimental Hematology 2002;10(4):351-354
The influencing factors on cord blood storage after collection and mononuclear cell separation as well as cryopreservation were studied. The mononuclear cell are separated from blood after blood collection, then cryopreserved and washed after thawed. Results showed that the cord blood kept at 4 degrees C or room temperature less than 24 hours after blood collection, mononuclear cell separated by hydroxyethylstarch and 2 centrifugations, mononuclear cell cryopreserved with 50% DMSO and autoplasma from cord blood as protectives and washing the cells after thawing. In conclusion, the optimal project in this study can effectively preserve cord blood mononuclear cells.
Blood Preservation
;
Cell Separation
;
methods
;
Cryopreservation
;
Fetal Blood
;
cytology
;
Humans
;
Leukocytes, Mononuclear
;
physiology
4.Effects of human mesenchymal stem cells and fibroblastoid cell line as feeder layers on expansion of umbilical cord blood CD34(+) cells in vitro.
Li-Jun MA ; Lei GAO ; Hong ZHOU ; Hui-Ying QIU ; Xiao-Xia HU ; Lin-Na XIE ; Jian-Min WANG
Journal of Experimental Hematology 2006;14(5):949-954
To investigate the effects of human mesenchymal stem cells (MSC) and human fibroblastoid cell line (HFCL) as feeder layer on expansion of umbilical cord blood CD34(+) cells in vitro, (60)Co gamma-ray irradiated MSC and HFCL were used as feeder layer to expand cord blood CD34(+) cells in culture. The efficiencies of MSC and HFCL on expansion of CD34(+) cells in culture with or without cytokines were compared. The results showed that no matter whether cytokines (rhFL, rhSCF, rhTPO) were added, the proliferation of nucleated cells after expansion for 12 days in HFCL group was statistically higher than that in MSC group, i.e. with cytokines (9797 +/- 361)% vs (7061 +/- 418)%; without cytokines (5305 +/- 354)% vs (1992 +/- 247)%, when the cell numbers at day 0 was accounted as 100%), P < 0.01. The proliferation of propagated CD34(+) cells between MSC group and HFCL without addition of cytokines was not statistically different (820 +/- 191)% vs (825 +/- 305)%, P > 0.05. However, in the presence of cytokines, the propagating rate of MSC group was lower than that of HFCL group (939 +/- 212)% vs (1617 +/- 222)%, P < 0.01. MSC was better than HFCL in maintaining the LTC-IC of UCB CD34(+) cells, i.e. the number of CFU-GM colonies in the fifth week was (129.95 +/- 8.73) /10(5) seeded cells vs (89.81 +/- 10.29) colonies/10(5) cells, P < 0.05; with addition of cytokines, the effect was more obvious, i.e. the number of CFU-GM colonies in the fifth week (192.93 +/- 4.95)/10(5) seeded cells vs (90.47 +/- 14.28) colonies/10(5) seeded cells, P < 0.01. MSC mixed with a certain proportion of HFCL facilitated maintaining the LTC-IC of UCB CD34(+) cells. When the proportion was 4:1, the number of CFU-GM colonies was the highest (186.89 +/- 11.11)/10(5) seeded cells, which was higher than that of both 3:2 group [(138.92 +/- 14.84) colonies/10(5) seeded cells] and MSC only group, i.e. (64.63 +/- 6.11) colonies/10(5) seeded cells, both P < 0.01. It is concluded that HFCL is better than MSC in maintaining the expansion of CD34(+) cells and cytokines can enhance this effect, while MSC are stronger than HFCL in maintaining the LTC-IC of UCB CD34(+) cells in vitro. MSC with addition of a certain proportion of HFCL can significantly enhance the efficiency of CD34(+) cell expansion.
Antigens, CD34
;
analysis
;
Bone Marrow Cells
;
cytology
;
physiology
;
Cell Line
;
Cell Proliferation
;
Cells, Cultured
;
Coculture Techniques
;
Fetal Blood
;
cytology
;
Fibroblasts
;
cytology
;
physiology
;
Humans
;
Mesenchymal Stromal Cells
;
cytology
;
physiology
5.Isolation and culture of human embryonic AGM derived HSPCs in hematopoietic culture systems created by AGM stromal cells.
Bei-Yan WU ; Shao-Liang HUANG ; Hui-Qin CHEN ; Xu-Chao ZHANG
Journal of Experimental Hematology 2008;16(3):579-583
This study was purposed to isolate human embryonic AGM derived HSPCs and investigate the effect of AGM stromal cells on AGM-derived HSPCs. Immunohistochemical sections of human AGM tissue were investigated for CD34, Flk-1 and VEGF expression. Human AGM-derived single cells were isolated and seeded onto pre-treated feeder of human AGM stromal cells (hAGMS3 and hAGMS4) by direct contact and non-contact co-culture in Transwell culture system. Growth characteristics of HSPCs with cobblestone area-forming cells (CAFCs) were observed and number of cobblestone area (CA) was counted. Indirect immunofluorescent assay was used to detect CD34 and Flk-1 expression on the surface of suspended cells as well as CAFCs in contact co-culture system. The cells after culture for 2 weeks were collected from both contact and non-contact co-culture systems for CFU assay. The result showed that hematopoietic cells in AGM tissue expressed CD34 and Flk-1. Both of the hematopoietic culture systems could produce CFCs. Nevertheless, direct contact co-culture produced CD34(+)Flk-1(+) CAFC and more CFUs than those from indirect non-contact culture (hAGMS3 system: 1647 +/- 194 vs 389 +/- 31, p < 0.05; hAGMS4 system: 1586 +/- 75 vs 432 +/- 35, p < 0.05). It is concluded that there were CD34(+)Flk-1(+) HSCs in human embryonic AGM region. The hematopoietic co-culture systems composed of AGM-derived HSPCs and AGM stromal cells are successfully established, both direct contact and Transwell non-contact co-culture can expand AGM-derived definitive HSPCs. Cell-cell contact between AGM-derived HSPCs and AGM stromal cells are of most importance to maintain and expand AGM-HSPCs.
Aorta
;
cytology
;
Cell Culture Techniques
;
methods
;
Cell Separation
;
Cells, Cultured
;
Coculture Techniques
;
Fetal Blood
;
cytology
;
Gonads
;
cytology
;
Hematopoietic Stem Cells
;
cytology
;
Humans
;
Mesonephros
;
cytology
;
Stromal Cells
;
cytology
;
physiology
6.Related factors affecting the isolation of multipotent non-hematopoietic adult stem cells from umbilical cord blood.
Yun-Tao LI ; Yan XU ; Hen-Xing MENG ; Wei GE ; Qiao-Chuan LI ; Chang-Chun WAN ; Zhen YU ; Chang-Hong LI ; Lu-Gui QIU
Journal of Experimental Hematology 2006;14(4):731-736
To investigate the related factors affecting the isolation of multipotent non-hematopoietic adult stem cells (MNASCs) from human umbilical cord blood in low serum (2%) condition, the isolation conditions were optimized and the yield of MNASCs was improved. MNASCs from human umbilical cord blood samples were isolated, and the effects of medium component, medium exchange time and initial plating density for isolation of MNASCs were studied. Then, the MNASCs were isolated and cultured in optimal condition, the surface antigen expression and differentiation potential of MNASCs were detected. The result showed that the medium of DMEM/F12 was better than IMDM and DMEM-LG for MNASCs culture in low serum condition. The optimal yield of MNASCs was obtained when mononuclear cells were cultured at a initial plating density of 1 x 10(6) cells/cm2 and the medium was exchanged to remove the nonadherent cells after 72 hours of inoculation. MNASCs isolated and cultured under the above-mentioned conditions maintained a homogenous morphology, high potential ability of expansion and differentiation. It is concluded that culture conditions with low serum defined in this study is optimal for the successful isolation and expansion of umbilical cord blood MNASCs with high numbers for subsequent cellular therapeutic approaches.
Cell Culture Techniques
;
methods
;
Cell Differentiation
;
physiology
;
Cell Separation
;
methods
;
Embryonic Stem Cells
;
cytology
;
physiology
;
Fetal Blood
;
cytology
;
Humans
;
Multipotent Stem Cells
;
cytology
;
physiology
7.Effect of mesenchymal stem/progenitor cells on differentiation of cord blood CD34+ cells towards megakaryocytes.
Shu CHEN ; Bing DAI ; Fa-Ming ZHU ; Ji HE ; Ying XIANG ; Li-Xing YAN
Chinese Journal of Applied Physiology 2008;24(1):77-80
AIMIn order to investigate the effect of mesenchymal stem/progenitor cells on proliferation and differentiation towards megakaryocytes of CD34+ cells from human umbilical cord blood in vitro.
METHODSAfter mesenchymal stem/progenitor cells were advancely planted in DMEM medium and grown up to 80%, then the CD34+ cells were added to culture with mesenchymal stem/ progenitor cells or without mesenchymal stem/progenitor cells in DMEM for 14 days with TPO + IL-3 + SCF, TPO + IL-3 + SCF + IL-11 respectively. After cultured for 14 days, mononuclear cells (MNCs) were counted by automatic cell analyzer. The number of CD41+ cells and platelets were detected by flow cytometry. Platelets function were assessed through platelet aggregation test which was induced by thrombin.
RESULTSAs compared with the control group, the number of MNCs of co-culture system was not increased significantly (P > 0.05), but the number of CD4+ cells and platelets were increased significantly (P < 0.05). The platelets were aggregated by thrombin induced which could be seen in microscope or flow cytometry.
CONCLUSIONIt is concluded that mesenchymal stem/progenitor cells may be promoted to induce the cord blood CD34+ cells to differentiate towards megakaryocyte in the culture medium.
Antigens, CD34 ; metabolism ; Bone Marrow Cells ; cytology ; Cell Differentiation ; physiology ; Cells, Cultured ; Fetal Blood ; cytology ; Humans ; Megakaryocytes ; cytology ; Mesenchymal Stromal Cells ; cytology ; physiology
8.Assessment on effect of short-term cryopreservation of cord blood hematopoietic cells.
Ji HE ; Jin-Hui LIU ; Kan JIANG ; Fa-Ming ZHU ; Li-Xing YAN
Journal of Experimental Hematology 2004;12(3):375-377
To study the effects of short-term cryopreservation of cord blood hematopoietic cells in liquid nitrogen, the viability and function of cord blood hematopoietic cells were investigated by using each of 8 samples cryopreserved for six months, one and two years after thawing respectively. Nucleated cells (NC) were detected by blood cell analyzer. CD34+ cells were analyzed by flow cytometry, CFU-GM were cultured and detected in vitro, the survival rate was determined by trypan blue staining. The results showed that the differences of recovery rate of NC, CD34+, CFU-GM were nonsignificant at three different cryopreserved times. In conclusion, the short-term storage in liquid nitrogen showed a good effect on cord blood hematopoietic cell without any significant change of activities and number of the cryopreserved hematopoietic cells.
Cell Survival
;
Cryopreservation
;
Fetal Blood
;
cytology
;
Hematopoietic Stem Cells
;
physiology
;
Humans
9.The growth characteristics of mesenchymal stem/progenitor cells in human umbilical cord blood.
Fan-Jun CHENG ; Ping ZOU ; Zhao-Dong ZHONG ; Rong GUO ; Juan XIAO
Journal of Experimental Hematology 2003;11(6):565-568
This study was done for investigating the frequency and proliferative feature of mesenchymal stem/progenitor cells (MSPC) in human umbilical cord blood (CB) and for searching a new seed cell for tissue engineering. Mononuclear cells was separated by Ficoll-Hypaque from cord blood and suspended in DMEM culture medium supplemented by 2% fetal bovine serum. The adherent CB cells were cultured and expanded at same medium. The results showed that the frequency of CB-MSPC was 0.5 x 10(-6) [(0.2 - 0.8) x 10(-6)]. The CB-MSPC showed a fibroblast-like morphology and retained their morphological feature at least after 20 sub-passages, and could extensively be expanded by about 1.3 x 10(7) times as much. The conclusion is that low serum DMEM culture could maintain the proliferation and differentiation potential of CB-MSPC. CB-MSPC might be a favorable seed cell for tissue engineering and regeneration.
Cell Adhesion
;
Cell Division
;
Fetal Blood
;
cytology
;
Humans
;
Mesenchymal Stromal Cells
;
physiology
;
Tissue Engineering
10.In vitro differentiation into megakaryocytes and generation of platelets from CD34+ cells of umbilical cord blood.
Xin LI ; Fang-ping CHEN ; Jing LIU ; Xin-hua WU ; Tie-bin JIANG ; Xue-yuan TANG
Journal of Central South University(Medical Sciences) 2006;31(5):776-781
OBJECTIVE:
To induce hematopoietic progenitor/stem cells of umbilical cord blood to differentiate into mature megakaryocytes and platelets in vitro and to investigate the mechanism of production of platelets.
METHODS:
The CD34+ cells were sorted from umbilical cord blood by magnetic activated cell sorting (MACS) and then cultured in vitro with optimized medium to be differentiated into mature megakaryocytes and platelets. The cultured cells and the platelet-like particles were isolated from the culture and were checked by the fluorescence-activated cell sorter (FACS), immunohistochemistry assays, light microscope,electron microscope and platelet aggregation tests.
RESULTS:
The cultured megakaryocytes were detected with proplatelets and both the cultured cells and the platelet-sized particles were found to have the same structure with the normal megakaryocytes and platelets by light and electron microscope. The immunohistochemistry assays revealed the cultured cells expressed GP II b III a with a positivity of 95% which was a special antigen for platelets and megakaryocytes. Culture-derived platelet-sized particles aggregated in response to thrombin as the plasma derived-platelets did. The cultured platelets had the same positivity of CD41 as the platelets from platelet rich plasma.
CONCLUSION
The hematopoietic progenitor/stem cells can be induced to differentiate into purified and mature megakaryocytes and platelets. It provides a practical way to study the mechanism of platelets production.
Antigens, CD34
;
metabolism
;
Blood Platelets
;
cytology
;
Cell Differentiation
;
physiology
;
Cells, Cultured
;
Fetal Blood
;
cytology
;
metabolism
;
Hematopoietic Stem Cells
;
cytology
;
metabolism
;
Humans
;
Megakaryocytes
;
cytology