1.Preparation and characterization of magnetic nano-particles with radiofrequency-induced hyperthermia for cancer treatment.
Xiangshan FAN ; Dongsheng ZHANG ; Jie ZHENG ; Ning GU ; Anwei DING ; Xiupeng JIA ; Hongyun QING ; Liqiang JIN ; Meiling WAN ; Qunhui LI
Journal of Biomedical Engineering 2006;23(4):809-813
Mn0.5Zn0.5Fe2O4 nano-particles were prepared by the chemical co-precipitation, their characteristics were observed with transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermal analysis system, and etc. The temperature changes of the nano-particles of Mn0.5Zn0.5Fe2O4 and its magnetic fluid explored in radiofrequency(RF,200 KHz, 4 KW) were measured. The proliferation ratio of L929 cells cultured in soak of Mn0.5Zn0.5Fe2O4 nano-particles were observed. The experiment indicates that the magnetic particles were about 40 nm diameter in average, round, had strong magnetism, and were proved to be consistent with the standard data of chart of XRD. Its magnetic fluid exposed to RF could be heated up to temperature range from 40 degrees C to 51 degrees C due to the amount of the magnetic nano-particles and intensity of the alternating magnetic field. Magnetic nano-particles were found to have no obvious cytotoxicity to L929 cells.
Animals
;
Cell Line
;
Ferrous Compounds
;
Hyperthermia, Induced
;
Magnetics
;
instrumentation
;
therapeutic use
;
Manganese
;
Materials Testing
;
Mice
;
Nanostructures
;
Zinc
2.Recent progress in development of antibiotics against Gram-negative bacteria.
Acta Pharmaceutica Sinica 2013;48(7):993-1004
Multidrug-resistant (MDR) bacterial infections, especially those caused by Gram-negative pathogens, have emerged to be one of the world's greatest health threats. However, not only have recent decades shown a steady decline in the number of approved antimicrobial agents but a disappointing discovery also void. The development of novel antibiotics to treat MDR Gram-negative bacteria has been stagnated over the last half century. Though few compounds have shown activities in vitro, in animal models or even in clinical studies, the global antibiotic pipeline is not encouraging. There are a plethora of unexpected challenges that may arise and cannot always be solved to cause promising drugs to fail. This review intends to summarize recent research and development activities to meet the inevitable challenge in restricting the proliferation of MDR Gram-negative bacteria, with focus on compounds that have entered into clinical development stage. In addition to new analogues of existing antibiotic molecules, attention is also directed to alternative strategies to develop antibacterial agents with novel mechanisms of action.
Aminoglycosides
;
pharmacology
;
therapeutic use
;
Animals
;
Anti-Bacterial Agents
;
pharmacology
;
therapeutic use
;
Antibodies, Monoclonal
;
pharmacology
;
therapeutic use
;
Drug Discovery
;
Drug Resistance, Multiple, Bacterial
;
Enzyme Inhibitors
;
pharmacology
;
therapeutic use
;
Ferrous Compounds
;
pharmacology
;
therapeutic use
;
Gram-Negative Bacteria
;
drug effects
;
Gram-Negative Bacterial Infections
;
drug therapy
;
Humans
;
Peptides
;
pharmacology
;
therapeutic use
;
Peptidomimetics
;
pharmacology
;
therapeutic use
;
Tetracyclines
;
pharmacology
;
therapeutic use
;
beta-Lactamase Inhibitors
;
beta-Lactams
;
pharmacology
;
therapeutic use
3.Iron Plays a Certain Role in Patterned Hair Loss.
Song Youn PARK ; Se Young NA ; Jun Hwan KIM ; Soyun CHO ; Jong Hee LEE
Journal of Korean Medical Science 2013;28(6):934-938
Role of iron in hair loss is not clear yet. The purpose of this study was to evaluate the relationship between iron and hair loss. Retrospective chart review was conducted on patients with female pattern hair loss (FPHL) and male pattern hair loss (MPHL). All patients underwent screening including serum ferritin, iron, and total iron binding capacity (TIBC), CBC, ESR and thyroid function test. For normal healthy controls, age-sex matched subjects who had visited the hospital for a check-up with no serious disease were selected. A total 210 patients with FPHL (n = 113) and MPHL (n = 97) with 210 healthy controls were analyzed. Serum ferritin concentration (FC) was lower in patients with FPHL (49.27 +/- 55.8 microg/L), compared with normal healthy women (77.89 +/- 48.32 microg/L) (P < 0.001). Premenopausal FPHL patients turned out to show much lower serum ferritin than age/sex-matched controls (P < 0.001). Among MPHL patients, 22.7% of them showed serum FC lower than 70 microg/L, while no one had serum FC lower 70 microg/L in healthy age matched males. These results suggest that iron may play a certain role especially in premenopausal FPHL. The initial screening of iron status could be of help for hair loss patients.
Administration, Oral
;
Adult
;
Alopecia/blood/*diagnosis/drug therapy
;
Dietary Supplements
;
Female
;
Ferritins/blood
;
Ferrous Compounds/therapeutic use
;
Hemoglobins/analysis
;
Humans
;
Iron/*blood
;
Male
;
Middle Aged
;
Premenopause
;
Retrospective Studies
;
Thyroid Function Tests
4.Dietary germanium biotite supplementation enhances the induction of antibody responses to foot-and-mouth disease virus vaccine in pigs.
Jin A LEE ; Bock Gie JUNG ; Myunghwan JUNG ; Tae Hoon KIM ; Han Sang YOO ; Bong Joo LEE
Journal of Veterinary Science 2014;15(3):443-447
We evaluated the potential ability of germanium biotite (GB) to stimulate the production of antibodies specific for foot-and-mouth disease virus (FMDV). To this aim, we measured the total FMDV-specific antibody responses and IgM production after vaccination against FMD both experimentally and in the field. GB supplementation with FMDV vaccination stimulated the production of anti-FMDV antibodies, and effectively increased IFN-gamma and TNF-alpha levels. These results suggest that GB may be a novel alternative feed supplement that can serve as a boosting agent and an immunostimulator for increasing the efficacy of FMDV vaccination in pigs.
Adjuvants, Immunologic/therapeutic use
;
Aluminum Silicates/*therapeutic use
;
Animals
;
Antibodies, Viral/*immunology
;
Antibody Formation/drug effects
;
*Dietary Supplements
;
Ferrous Compounds/*therapeutic use
;
Foot-and-Mouth Disease/*immunology/prevention & control
;
Foot-and-Mouth Disease Virus/immunology
;
Germanium/*therapeutic use
;
Swine
;
Swine Diseases/immunology/prevention & control/*virology
5.Antiviral effect of dietary germanium biotite supplementation in pigs experimentally infected with porcine reproductive and respiratory syndrome virus.
Bock Gie JUNG ; Jin A LEE ; Bong Joo LEE
Journal of Veterinary Science 2013;14(2):135-141
Germanium biotite (GB) is an aluminosilicate mineral containing 36 ppm germanium. The present study was conducted to better understand the effects of GB on immune responses in a mouse model, and to demonstrate the clearance effects of this mineral against Porcine reproductive and respiratory syndrome virus (PRRSV) in experimentally infected pigs as an initial step towards the development of a feed supplement that would promote immune activity and help prevent diseases. In the mouse model, dietary supplementation with GB enhanced concanavalin A (ConA)-induced lymphocyte proliferation and increased the percentage of CD3+CD8+ T lymphocytes. In pigs experimentally infected with PRRSV, viral titers in lungs and lymphoid tissues from the GB-fed group were significantly decreased compared to those of the control group 12 days post-infection. Corresponding histopathological analyses demonstrated that GB-fed pigs displayed less severe pathological changes associated with PRRSV infection compared to the control group, indicating that GB promotes PRRSV clearance. These antiviral effects in pigs may be related to the ability of GB to increase CD3+CD8+ T lymphocyte production observed in the mice. Hence, this mineral may be an effective feed supplement for increasing immune activity and preventing disease.
Aluminum Silicates/administration & dosage/*therapeutic use
;
Animal Feed/analysis
;
Animals
;
Antigens, CD3/metabolism
;
Antigens, CD8/metabolism
;
Antiviral Agents/administration & dosage/*therapeutic use
;
Concanavalin A/metabolism
;
Dietary Supplements/analysis
;
Disease Models, Animal
;
Ferrous Compounds/administration & dosage/*therapeutic use
;
Germanium/administration & dosage/*therapeutic use
;
Lung/immunology/virology
;
Lymphocyte Activation/drug effects
;
Lymphocytes/cytology/drug effects
;
Lymphoid Tissue/immunology/virology
;
Mice
;
Mitogens/metabolism
;
Porcine Reproductive and Respiratory Syndrome/*drug therapy/pathology/virology
;
Porcine respiratory and reproductive syndrome virus/*drug effects
;
Swine