1.Effect of Tongdu Tiaoshen acupuncture on hippocampal neuronal ferroptosis in depression rats based on SLC7A11/GPX4 pathway.
Tingting QIAN ; Ling ZOU ; Zhi GAO ; Yu WU ; Yanbiao ZHAO ; Nan LI ; Hui LIU ; Meixiang SUN ; Peiyang SUN
Chinese Acupuncture & Moxibustion 2025;45(8):1120-1127
OBJECTIVE:
To observe the effects of Tongdu Tiaoshen acupuncture (acupuncture for unblocking the obstruction in the governor vessel and regulating the spirit) on the depression-like behavior and the hippocampal neuronal ferroptosis mediated by solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) pathway in depression rats, and explore the mechanism of this therapy for depression.
METHODS:
Of 30 male SD rats of SPF grade, 24 rats were selected. According to the random number table, they were divided into a normal group (n=8) and a modeling group (n=16). The rats in the modeling group were subjected to chronic unpredictable mild stress (CUMS) for 28 consecutive days to establish depression model. After modeling, 16 successfully-modeled rats were randomly divided into a model group and an acupuncture group, 8 rats in each one. In the acupuncture group, Tongdu Tiaoshen acupuncture was applied to "Dazhui"(GV14), "Shuigou" (GV26), "Baihui" (GV20) and "Shenting" (GV24). This intervention measure was deliveredonce a day, continuously for 6 days. The intervention discontinued on day 7, and was completed in 4 weeks. Before and after modeling, and after intervention completion, the behavioristics detection was performed using sucrose preference experiment and open field experiment. After intervention, using hematoxylin-eosin (HE) and Nissl staining, the morphology of hippocampal neurons was observed; with Western blot method, the protein expression of GPX4, SLC7A11, Ferritin and acyl-CoA synthetase long-chain family 4 (ACSL4) in hippocampal tissues was detected; with the real-time fluorescence quantitative PCR adopted, the mRNA expression of GPX4, SLC7A11, Ferritin and ACSL4 was detected; and using colorimetry, the hippocampal iron content was determined.
RESULTS:
After modeling, the sucrose preference rates, the total distance of movement, the standing times and the boxes of horizontal crossing in the model group and the acupuncture group were lower than those in the normal group (P<0.01). After the intervention, the sucrose preference rates, the total distance of movement, the standing times and the boxes of horizontal crossing in the acupuncture group were higher than those in the model group (P<0.01, P<0.05). Compared with the normal group, the number of necrotic cells increased and the number of Nissl bodies decreased in the model group; and when compared with the model group, the neuronal pyknosis and necrosis were ameliorated, the cells were arranged more regularly, the neuronal structure was clear, the matrix was dense, the blood vessels were enriched and the number of Nissl bodies increased in the acupuncture group. In comparison with the normal group, the relative expression of protein and mRNA of hippocampal GPX4, SLC7A11 decreased (P<0.01), it increased in the expression of hippocampal Ferritin and ACSL4 (P<0.01) in the model group. When compared with the model group, in the acupuncture group, the relative expression of protein and mRNA of hippocampal GPX4, SLC7A11 was elevated (P<0.01, P<0.05), it was dropped for hippocampal Ferritin and ACSL4 (P<0.01). In the model group, the hippocampal iron content was elevated when compared with that in the normal group (P<0.01); and it was reduced in the acupuncture group when compared with that in the model group (P<0.05).
CONCLUSION
Tongdu Tiaoshen acupuncture attenuates depression-like behaviors in the depression rats, which may be related to regulating SLC7A11/GPX4 pathway and inhibiting neuronal ferroptosis in the hippocampus.
Animals
;
Ferroptosis
;
Male
;
Hippocampus/cytology*
;
Rats, Sprague-Dawley
;
Rats
;
Depression/enzymology*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Acupuncture Therapy
;
Neurons/metabolism*
;
Humans
;
Acupuncture Points
;
Amino Acid Transport System y+/genetics*
;
Glutathione Peroxidase/genetics*
2.Research progress on the regulation of ferroptosis by non-coding RNAs in esophageal squamous cell cancer.
Jia-Min WANG ; Pan LIU ; Rui ZHU ; Dan SU
Acta Physiologica Sinica 2025;77(3):563-572
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive tract that poses a significant threat to human health, with an incidence rate that continues to rise globally. Increasing research highlights the crucial role of non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating ferroptosis and contributing to the malignant progression of ESCC. These ncRNAs influence the proliferation, apoptosis, and invasion capabilities of ESCC cells by modulating iron metabolism and redox balance. miRNAs can regulate cellular iron accumulation and oxidative stress by targeting ferroptosis-related genes; lncRNAs may indirectly affect iron metabolic pathways by competitively binding to miRNAs; circRNAs, through a sponge effect, may regulate the activity of miRNAs. This review systematically summarizes the mechanisms of ncRNAs-mediated regulation of ferroptosis in ESCC, focusing on molecular mechanisms, regulatory networks, and their specific roles in the ferroptosis process. Additionally, the potential of ncRNAs in ESCC diagnosis, prognosis assessment, and therapeutic intervention is discussed, aiming to provide new insights and targets for ferroptosis-based tumor therapy.
Ferroptosis/genetics*
;
Humans
;
Esophageal Neoplasms/physiopathology*
;
Esophageal Squamous Cell Carcinoma
;
MicroRNAs/physiology*
;
RNA, Long Noncoding/physiology*
;
RNA, Circular
;
RNA, Untranslated/physiology*
3.Huotan Jiedu Tongluo Decoction inhibits ferroptosis by regulating Nrf2/GPX4 pathway to ameliorate atherosclerotic lesions in ApoE~(-/-) mice.
Di GAO ; Teng-Hui TIAN ; Ke-Ying YU ; Xiao SHAO ; Wen XUE ; Zhi-Xuan ZHAO ; Yue DENG
China Journal of Chinese Materia Medica 2025;50(7):1908-1919
The purpose of this study was to clarify the effect of Huotan Jiedu Tongluo Decoction on atherosclerosis(AS) injury in ApoE~(-/-) mice by regulating the ferroptosis pathway. Seventy-five ApoE~(-/-) mice were randomly divided into model group, low-, medium-, and high-dose of Huotan Jiedu Tongluo Decoction groups, and evolocumab group(n=15), and 15 C57BL/6J mice were selected as the blank group. Mice in the blank group were fed with a normal diet, and those in the other groups were fed with a high-fat diet to induce AS. From the 9th week, mice in Huotan Jiedu Tongluo Decoction groups were administrated with Huotan Jiedu Tongluo Decoction at corresponding doses by gavage, and those in the blank group and the model group were given an equal volume of distilled water. Mice in the evolocumab group were treated with evolocumab 18.2 mg·kg~(-1 )by subcutaneous injection every 2 weeks. After 8 weeks of continuous intervention, oil red O staining and hematoxylin-eosin(HE) staining were employed to observe the lipid deposition and plaque formation in the aortic root. Masson staining was used to evaluate the collagen content in the aortic root. The serum levels of total cholesterol(TC), triglycerides(TG), high-density lipoprotein cholesterol(HDL-C), and low-density lipoprotein cholesterol(LDL-C) were determined by biochemical kits. The levels of Fe~(2+), superoxide dismutase(SOD), malondialdehyde(MDA), and glutathione(GSH) in the aorta were measured by colorimetry. The protein and mRNA levels of nuclear factor erythroid 2-related factor 2(Nrf2), glutathione peroxidase 4(GPX4), solute carrier family 7 member 11(SLC7A11), and acyl-CoA synthetase long chain family member 4(ACSL4) in the aorta were detected by Western blot and RT-qPCR, respectively. The expression of Nrf2, GPX4, and SLC7A11 was localized by immunofluorescence. The results showed that low-, medium-, and high-dose Huotan Jiedu Tongluo Decoction reduced the plaque formation of aortic root and increased the collagen content in AS mice. At the same time, Huotan Jiedu Tongluo Decoction improved the lipid metabolism by lowering the levels of TC, LDL-C, and TG and elevating the level of HDL-C in the serum. Huotan Jiedu Tongluo Decoction enhanced the antioxidant capacity by elevating the levels of GSH and SOD and lowering the level of MDA in the aorta and inhibiting the accumulation of Fe~(2+) in the aorta. In addition, Huotan Jiedu Tongluo Decoction up-regulated the protein and mRNA levels of Nrf2, GPX4, and SLC7A11, while down-regulating the protein and mRNA levels of ACSL4. In summary, Huotan Jiedu Tongluo Decoction can effectively alleviate AS lesions in ApoE~(-/-) mice by activating the Nrf2/GPX4 pathway, reducing lipid peroxidation, and inhibiting ferroptosis.
Animals
;
Ferroptosis/drug effects*
;
Atherosclerosis/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Mice, Inbred C57BL
;
Apolipoproteins E/metabolism*
;
Male
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Mice, Knockout
4.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
5.Mechanism of salidroside in inhibiting expression of adhesion molecules in oxLDL-induced endothelial cells by regulating ferroptosis mediated by SIRT1/Nrf2.
Meng ZHANG ; Min XIAO ; Jing-Jing LI ; Jiang-Feng LI ; Guang-Hui FAN
China Journal of Chinese Materia Medica 2025;50(10):2787-2797
This article investigated the effect and mechanism of salidroside(SAL) on the expression of adhesion molecules in oxidized low-density lipoprotein(oxLDL)-induced mouse aortic endothelial cell(MAEC). The oxLDL-induced endothelial cell injury model was constructed, and the safe concentration and action time of SAL were screened. The cells were divided into control group, oxLDL group, low and high concentration groups of SAL, and ferrostatin-1(Fer-1) group. The cell viability was detected by CCK-8 assay; lactate dehydrogenase(LDH) leakage was measured by colorimetry; the expression of intercellular adhesion molecule 1(ICAM-1) and recombinant vascular cell adhesion molecule 1(VCAM-1) were detected by immunofluorescence; Fe~(2+),glutathione(GSH),malondialdehyde(MDA),and 4-hydroxynonenal(4-HNE) levels were detected by kit method; reactive oxygen species(ROS) was detected by DCFH-DA probe; the levels of glutathione peroxidase 4(GPX4),silent mating type information regulation 2 homolog 1(SIRT1), and nuclear factor erythroid 2-related factor 2(Nrf2) were determined by using Western blot. The inhibitors of Nrf2 and SIRT1 were used, and endothelial cell were divided into control group, oxLDL group, SAL group, ML385 group(Nrf2 inhibitor), and EX527 group(SIRT1 inhibitor). The ultrastructure of mitochondria was observed by electron microscope; mitochondrial membrane potential(MMP) was detected by flowcytometry; the expressions of SIRT1,Nrf2,solute carrier family 7 member 11(SLC7A11),GPX4,ferroportin 1(FPN1),ferritin heavy chain 1(FTH1),ICAM-1, and VCAM-1 were detected by Western blot. The results showed that similar to Fer-1,low and high concentrations of SAL could improve cell viability, inhibit LDH release and the expression of ICAM-1 and VCAM-1 in oxLDL-induced endothelial cells(P<0.05 or P<0.01). It was related to increase in GSH level, decrease in Fe~(2+),ROS,MDA, and 4-HNE level, and up-regulation of SIRT1,Nrf2, and GPX4 expression to inhibit ferroptosis(P<0.05 or P<0.01). The intervention effect of high concentration SAL was the most significant. ML385 and EX527 could partially offset the protection of SAL on mitochondrial structure and MMP and reverse the ability of SAL to up-regulate the expression of SIRT1,Nrf2,SLC7A11,GPX4,FPN1, and FTH1 and down-regulate the expression of ICAM-1 and VCAM-1(P<0.05 or P<0.01).To sum up, SAL could reduce the expression of ICAM-1 and VCAM-1 in oxLDL-induced endothelial cell, which may relate to activation of SLC7A11/GPX4 antioxidant signaling pathway mediated by SITR1/Nrf2, up-regulation of FPN1 and FTH1 expression, and inhibition of ferroptosis.
Sirtuin 1/genetics*
;
Animals
;
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Endothelial Cells/cytology*
;
Glucosides/pharmacology*
;
Phenols/pharmacology*
;
Cell Adhesion Molecules/genetics*
;
Reactive Oxygen Species/metabolism*
;
Intercellular Adhesion Molecule-1/genetics*
;
Vascular Cell Adhesion Molecule-1/genetics*
;
Cell Survival/drug effects*
6.Mechanism of Jiming Powder in inhibiting ferroptosis in treatment of myocardial infarction based on NRF2/HO-1/GPX4 pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Fang-He LI ; Kuo GAO ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(11):3108-3116
This study employed a mouse model of coronary artery ligation to assess the effect and mechanism of Jiming Powder on mitochondrial autophagy in mice with myocardial infarction. The mouse model of heart failure post-myocardial infarction was established by ligating the left anterior descending coronary artery. The pharmacological efficacy of Jiming Powder was evaluated through echocardiographic imaging, hematoxylin-eosin(HE) staining, and Masson staining. The levels of malondialdehyde(MDA), Fe~(2+), reduced glutathione(GSH), and superoxide dismutase(SOD) in heart tissues, as well as MDA immunofluorescence of heart tissues, were measured to assess lipid peroxidation and Fe~(2+) levels in the hearts of mice in different groups. Ferroptosis levels in the groups were evaluated using scanning electron microscopy and Prussian blue staining. Western blot analysis was conducted to detect the levels of key ferroptosis-related proteins, including nuclear factor erythroid 2-related factor 2(NRF2), ferritin heavy chain(FTH), glutathione peroxidase 4(GPX4), solute carrier family 7 member 11(SLC7A11), heme oxygenase 1(HO-1), and Kelch-like ECH-associated protein 1(KEAP1). The results showed that compared with the model group, both the high-and low-dose Jiming Powder groups exhibited significantly reduced left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd), while the left ventricular ejection fraction(EF) and left ventricular fractional shortening(FS) were significantly improved, effectively enhancing cardiac function in mice post-myocardial infarction. HE staining revealed that Jiming Powder attenuated myocardial inflammatory cell infiltration post-infarction, and Masson staining indicated that Jiming Powder effectively reduced fibrosis in the infarct margin area. Treatment with Jiming Powder reduced the levels of MDA and Fe~(2+), indicators of lipid peroxidation post-myocardial infarction, while increasing GSH and SOD levels, thus protecting ischemic myocardium. Western blot results demonstrated that Jiming Powder reduced KEAP1 protein accumulation, activated the NRF2/HO-1/GPX4 pathway, and up-regulated the protein expression of FTH and SLC7A11, exerting an inhibitory effect on ferroptosis. This study reveals that Jiming Powder exerts a therapeutic effect on myocardial infarction by inhibiting ferroptosis through the NRF2/HO-1/GPX4 pathway, providing a foundation for subsequent research on the pharmacological effects of Jiming Powder.
Animals
;
Ferroptosis/drug effects*
;
Myocardial Infarction/physiopathology*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Heme Oxygenase-1/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Disease Models, Animal
7.Mechanism of puerarin improving myocardial contractile function in myocardial hypertrophy by inhibiting ferroptosis via Nrf2/ARE/HO-1 signaling pathway.
Yan-Dong LIU ; Wei QIAO ; Zhao-Hui PEI ; Guo-Liang SONG ; Wei JIN ; Wei-Bing ZHONG ; Qin-Qin DENG
China Journal of Chinese Materia Medica 2025;50(16):4679-4689
This study aims to explore the specific mechanism by which puerarin inhibits ferroptosis and improves the myocardial contractile function in myocardial hypertrophy through the nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant response element(ARE)/heme oxygenase-1(HO-1) signaling pathway. The hypertrophic cardiomyocyte model was established using phenylephrine, and H9c2 cells were divided into control group, model group, puerarin group, and puerarin+ML385 group. Cell viability and surface area were detected by cell counting kit-8(CCK-8) and immunofluorescence experiments. The mitochondrial membrane potential and Ca~(2+) concentration were measured. The ferroptosis-related indicators were detected by biochemical and fluorescence staining methods. The expression of proteins related to ferroptosis and the Nrf2/ARE/HO-1 signaling pathway was detected by Western blot. A myocardial hypertrophy model was established, and 40 rats were randomly divided into sham group, model group, puerarin group, and puerarin+Nrf2 inhibitor(ML385) group, with 10 rats in each group. Echocardiogram, hemodynamic parameters, and myocardial hypertrophy parameters were measured. Histopathological changes of myocardial tissues were observed by hematoxylin and eosin(HE) staining and Masson staining. Biochemical methods, enzyme-linked immunosorbent assay(ELISA), and fluorescence staining were used to detect inflammatory factors and ferroptosis-related indicators. Immunohistochemistry was used to detect the expression of proteins related to ferroptosis and the Nrf2/ARE/HO-1 signaling pathway. Cell experiments showed that puerarin intervention significantly enhanced the viability of hypertrophic cardiomyocytes, reduced their surface area, and restored mitochondrial membrane potential and Ca~(2+) homeostasis. Mechanism studies revealed that puerarin promoted Nrf2 nuclear translocation, upregulated the expression of HO-1, solute carrier family 7 member 11(SLC7A11), and glutathione peroxidase 4(GPX4), and decreased malondialdehyde(MDA), reactive oxygen species(ROS), and iron levels. These protective effects were reversed by ML385. In animal experiments, puerarin improved cardiac function in rats with myocardial hypertrophy, alleviated myocardial hypertrophy and fibrosis, inhibited inflammatory responses and ferroptosis, and promoted nuclear Nrf2 translocation and HO-1 expression. However, combined intervention with ML385 led to deterioration of hemodynamics and a rebound in ferroptosis marker levels. In conclusion, puerarin may inhibit cardiomyocyte ferroptosis through the Nrf2/ARE/HO-1 signaling pathway, thereby improving myocardial contractile function in myocardial hypertrophy.
Animals
;
NF-E2-Related Factor 2/genetics*
;
Rats
;
Ferroptosis/drug effects*
;
Signal Transduction/drug effects*
;
Isoflavones/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Cardiomegaly/genetics*
;
Myocytes, Cardiac/metabolism*
;
Antioxidant Response Elements/drug effects*
;
Myocardial Contraction/drug effects*
;
Heme Oxygenase-1/genetics*
;
Cell Line
8.mTOR promotes oxLDL-induced vascular smooth muscle cell ferroptosis by inhibiting autophagy.
Yi LI ; Lijun ZHANG ; Yuke ZHANG ; Qi ZHANG ; Lijun ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):687-694
Objective To explore the role and mechanism of mammalian target of rapamycin (mTOR) in oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in vascular smooth muscle cells (VSMCs). Methods A model of oxLDL-induced VSMC ferroptosis was established. VSMCs were co-treated with either the mTOR inhibitor rapamycin or the autophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP), followed by detection of autophagy and ferroptosis-related indexes. Quantitative real-time PCR and Western blot were used respectively to analyze the expression of mTOR, glutathione peroxidase 4 (GPX4), sequestosome 1 (p62), and microtubule-associated protein 1 light chain 3 (LC3). Flow cytometry was employed to assess VSMC death. C11 BODIPY fluorescent staining was used to measure cellular lipid peroxidation levels. Colorimetric assays were performed to determine the contents of malondialdehyde (MDA), ferrous ion (Fe2+) and glutathione (GSH). Results oxLDL significantly upregulated mTOR expression in VSMCs, while increasing p62 expression and reducing LC3 expression, thereby suppressing VSMC autophagy. Compared with oxLDL treatment alone, rapamycin co-treatment reversed oxLDL-induced VSMC ferroptosis, as characterized by reduced VSMC death, increased GPX4 expression and GSH contents, along with decreased MDA content, Fe2+ content and lipid peroxidation levels. Similarly, CCCP co-treatment activated autophagy characterized by reduced p62 expression and elevated LC3 expression, which subsequently alleviated oxLDL-induced ferroptosis, showing reduced VSMC death, increased GPX4 expressions and GSH contents, and decreased MDA content, Fe2+ content and lipid peroxidation levels. Moreover, mTOR inhibition by rapamycin significantly reversed the oxLDL-induced upregulation of p62 and downregulation of LC3. Conclusion mTOR may promote oxLDL-induced VSMC ferroptosis by suppressing autophagy.
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
TOR Serine-Threonine Kinases/physiology*
;
Autophagy/drug effects*
;
Muscle, Smooth, Vascular/metabolism*
;
Animals
;
Rats
;
Myocytes, Smooth Muscle/cytology*
;
Cells, Cultured
;
Lipid Peroxidation/drug effects*
;
Sequestosome-1 Protein/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
;
Microtubule-Associated Proteins/genetics*
;
Sirolimus/pharmacology*
9.Construction and Validation of A Prognostic Model for Lung Adenocarcinoma Based on Ferroptosis-related Genes.
Zhanrui ZHANG ; Wenhao ZHAO ; Zixuan HU ; Chen DING ; Hua HUANG ; Guowei LIANG ; Hongyu LIU ; Jun CHEN
Chinese Journal of Lung Cancer 2025;28(1):22-32
BACKGROUND:
Ferroptosis-related genes play a crucial role in regulating intracellular iron homeostasis and lipid peroxidation, and they are involved in the regulation of tumor growth and drug resistance. The expression of ferroptosis-related genes in tumor tissues can be used to predict patients' future survival times, aiding doctors and patients in anticipating disease progression. Based on the sequencing data of lung adenocarcinoma (LUAD) patients from The Cancer Genome Atlas (TCGA) database, this study identified genes involved in the regulation of ferroptosis, constructed a prognostic model, and evaluated the predictive performance of the model.
METHODS:
A total of 1467 ferroptosis-related genes were obtained from the GeneCards database. Gene expression profiles and clinical data from 541 LUAD patients were collected from the TCGA database. The expression data of all ferroptosis-related genes were extracted, and differentially expressed genes were identified using R software. Survival analysis was performed on these genes to screen for those with prognostic value. Subsequently, a prognostic risk scoring model for ferroptosis-related genes was constructed using LASSO regression model. Each LUAD patient sample was scored, and the patients were divided into high-risk and low-risk groups based on the median score. Receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC) was calculated. Kaplan-Meier survival curves were generated to assess model performance, followed by validation in an external dataset. Finally, univariate and multivariate Cox regression analyses were conducted to evaluate the independent prognostic value and clinical relevance of the model.
RESULTS:
Through survival analysis, 121 ferroptosis-related genes associated with prognosis were initially identified. Based on this, a LUAD prognostic risk scoring model was constructed using 12 ferroptosis-related genes (ALG3, C1QTNF6, CCT6A, GLS2, KRT6A, LDHA, NUPR1, OGFRP1, PCSK9, TRIM6, IGF2BP1 and MIR31HG). The results indicated that patients in the high-risk group had significantly shorter survival time than those in the low-risk group (P<0.001), and the model demonstrated good predictive performance in both the training set (1-yr AUC=0.721) and the external validation set (1-yr AUC=0.768). Risk scores were significantly associated with the prognosis of LUAD patients in both univariate and multivariate Cox regression analyses (P<0.001), suggesting that this score is an important prognostic factor for LUAD patients.
CONCLUSIONS
This study successfully established a LUAD risk scoring model composed of 12 ferroptosis-related genes. In the future, this model is expected to be used in conjunction with the tumor-node-metastasis (TNM) staging system for prognostic predictions in LUAD patients.
Humans
;
Ferroptosis/genetics*
;
Prognosis
;
Adenocarcinoma of Lung/pathology*
;
Lung Neoplasms/pathology*
;
Male
;
Female
;
Gene Expression Regulation, Neoplastic
;
Middle Aged
;
ROC Curve
10.Diagnostic and predictive value of ferroptosis-related genes in patients with ulcerative colitis.
Rongmao HE ; Zeyang FANG ; Yunyun ZHANG ; Youliang WU ; Shixiu LIANG ; Tao JI ; Kequan CHEN ; Siqi WANG
Journal of Southern Medical University 2025;45(9):1927-1937
OBJECTIVES:
To explore the value of ferroptose-related genes in the diagnosis and prediction of ulcerative colitis (UC).
METHODS:
We used UC dataset from the GEO database to screen for differentially expressed genes (DEGs) in UC. The DEGs related to ferroptositis were screened from the FerrDb database and their functions were analyzed. The hub genes were identified by constructing the protein-protein interaction network (PPI), the differences in immune infiltration levels between UC and the control group were evaluated using CIBERSORT, and the diagnostic values of the hub genes for UC were verified by using the training set. In a mouse model of UC, we examined the expression levels of the hub genes in the colon tissues of the mice using real-time fluorescence quantitative PCR (qPCR).
RESULTS:
We identified a total of 76 DEGs related to ferroptosis. Functional enrichment analysis showed that these genes were significantly enriched in ferroptosis and hypoxia pathways. The PPI network identified 10 hub genes, and 9 of them were highly expressed in UC. Analysis of immune cell infiltration showed that 27 cell types were significantly increased in UC (P<0.05), and the immune checkpoints-related genes had the strongest correlation with the hub gene PPARG (P<0.05). Verification analysis using the training set showed that P4HB, PPARG and STAT3 had the best predictive value for UC (P<0.05). In the UC mouse model, the expression of PPARG was significantly decreased and the expressions of P4HB and STAT3 were significantly increased in the colon tissues of the mice as compared with the normal mice.
CONCLUSIONS
Ferroptose-related genes have significant value for diagnosis and prediction of UC.
Colitis, Ulcerative/genetics*
;
Animals
;
Mice
;
Ferroptosis/genetics*
;
Humans
;
Protein Interaction Maps
;
Disease Models, Animal
;
Gene Expression Profiling
;
STAT3 Transcription Factor/genetics*

Result Analysis
Print
Save
E-mail