1. Effects of sulforaphane on brain mitochondria: mechanistic view and future directions
Journal of Zhejiang University. Science. B 2020;21(4):263-279
The organosulfur compound sulforaphane (SFN; C6H11NOS2) is a potent cytoprotective agent promoting antioxidant, anti-inflammatory, antiglycative, and antimicrobial effects in in vitro and in vivo experimental models. Mitochondria are the major site of adenosine triphosphate (ATP) production due to the work of the oxidative phosphorylation (OXPHOS) system. They are also the main site of reactive oxygen species (ROS) production in nucleated human cells. Mitochondrial impairment is central in several human diseases, including neurodegeneration and metabolic disorders. In this paper, we describe and discuss the effects and mechanisms of action by which SFN modulates mitochondrial function and dynamics in mammalian cells. Mitochondria-related pro-apoptotic effects promoted by SFN in tumor cells are also discussed. SFN may be considered a cytoprotective agent, at least in part, because of the effects this organosulfur agent induces in mitochondria. Nonetheless, there are certain points that should be addressed in further experiments, indicated here as future directions, which may help researchers in this field of research.
2.Effects of sulforaphane on brain mitochondria: mechanistic view and future directions.
Fernanda Rafaela JARDIM ; Fhelipe Jolner Souza de ALMEIDA ; Matheus Dargesso LUCKACHAKI ; Marcos Roberto de OLIVEIRA
Journal of Zhejiang University. Science. B 2020;21(4):263-279
The organosulfur compound sulforaphane (SFN; C6H11NOS2) is a potent cytoprotective agent promoting antioxidant, anti-inflammatory, antiglycative, and antimicrobial effects in in vitro and in vivo experimental models. Mitochondria are the major site of adenosine triphosphate (ATP) production due to the work of the oxidative phosphorylation (OXPHOS) system. They are also the main site of reactive oxygen species (ROS) production in nucleated human cells. Mitochondrial impairment is central in several human diseases, including neurodegeneration and metabolic disorders. In this paper, we describe and discuss the effects and mechanisms of action by which SFN modulates mitochondrial function and dynamics in mammalian cells. Mitochondria-related pro-apoptotic effects promoted by SFN in tumor cells are also discussed. SFN may be considered a cytoprotective agent, at least in part, because of the effects this organosulfur agent induces in mitochondria. Nonetheless, there are certain points that should be addressed in further experiments, indicated here as future directions, which may help researchers in this field of research.
Animals
;
Antioxidants/pharmacology*
;
Apoptosis/drug effects*
;
Brain/ultrastructure*
;
Carbon Monoxide Poisoning/metabolism*
;
Cytoprotection
;
Humans
;
Isothiocyanates/pharmacology*
;
Membrane Potential, Mitochondrial/drug effects*
;
Mitochondria/metabolism*
;
Sulfoxides