1.The Treatment of Gustilo’s ⅢType Open Tibia and Fibula Fractures with First External Fixator and Second Locking Plate Fixation
Dailiang JIA ; Lin LV ; Zhen JIANG ; Fenglong CHU ; Cunling JIA
Journal of Kunming Medical University 2013;(10):81-83
Objective To investigate the effects of first external fixator and second locking plate fixation in treating open tibiofibular fractures. Methods We retrospectively analyzed the 36 patients with Gustilo'sⅢtype tibia and fibula fractures from Jan. 2009 to Dec. 2010. All the patients were treated with first external fixator and second locking plate fixation,and the curative effect and the extremity function were evaluated.Results All patients were followed-up for 18 months (6 to 24 months) in average,and all the fractures were healed in 5.5 months averagely. According the Johner-Wruhs evaluation standard, excellent was in 24 cases, good was 10 cases,and bad was in 2 cases. The excellent and good rate was 94%. According the Merchant evaluation standard, excellent was in 26 cases,good was in 5 cases,fair was in 4 cases,bad was in 2 cases. The excellent and good rate was 86.1%.The outcome was satisfactory. Conclusion The first external Fixator and second locking plate fixation in treating open tibiofibular fractures can improve the healing rate and the functional recovery.
2.Relationship between mixed exposure to heavy metals and seminal fructose in men of childbearing age
Jinhu CAO ; Fenglong LIN ; Zhongyi YUE ; Pingyang ZHANG ; Yufen HAN ; Guanghui ZHANG ; Jingchao REN
Journal of Environmental and Occupational Medicine 2023;40(11):1270-1277
Background The human body is usually exposed to a variety of heavy metals at the same time, and different types and concentrations of heavy metals may have complex interactions during their absorption and metabolism in the human body. Seminal fructose is an important energy source for sperm movement. A large number of studies have shown that metal exposure may impair semen quality, and seminal fructose is an important factor affecting male reproduction, so it is necessary to investigate the relationship between mixed heavy metal exposure and seminal fructose to explore the mechanism of semen quality damage caused by metal exposure. Objective To understand the status of common heavy metal exposure in men of childbearing age in Puyang City, Henan Province, and to study the relationship between mixed exposure to heavy metals and seminal fructose, as well as potential interactions among heavy metals. Methods Volunteers were recruited from the Puyang Maternal and Child Health Hospital Reproductive Center for a cross-sectional survey on general demographic characteristics, smoking, alcohol consumption, and other information. Semen samples were collected to detect 12 metals such as vanadium (V), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), selenium (Se), silver (Ag), cadmium (Cd), barium (Ba), thallium (Tl), iron (Fe), and lead (Pb) in seminal plasma and seminal fructose. After correcting for selected confounding factors, a Bayesian kernel machine regression (BKMR) model was used to evaluate the impact of seminal plasma heavy metal mixed exposure and its interactions on seminal fructose. Results A total of 825 adult males were enrolled. The concentrations in M (P25, P75) of V, Mn, Co, Ni, Zn, Se, Ag, Cd, Ba, Tl, Fe, and Pb in seminal plasma were 0.39 (0.28, 0.54), 12.31 (8.92, 17.52), 0.26 (0.18, 0.38), 5.15 (3.32, 8.64), 182159.80 (121847.80, 199144.50), 13.61 (10.55, 17.68), 0.03 (0.02, 0.04), 0.34 (0.27, 0.46), 8.64 (5.94, 13.43), 0.06 (0.05, 0.08), 168.74 (114.17, 259.45), and 1.69 (1.15, 2.36) μg·L−1 respectively. The Spearman correlation results indicated that there was a negative correlation between V, Mn, Co, Zn, Se, Ba, Tl, or Fe in seminal plasma and seminal fructose (P<0.05), and the values of r (95%CI) were −0.044 (−0.087, −0.001), −0.129 (−0.171, −0.087), −0.055 (−0.099, −0.012), −0.099 (−0.143, −0.056), −0.053 (−0.097, −0.010), −0.068 (−0.111, −0.025), −0.095 (−0.138, −0.052), and −0.082 (−0.125, −0.039), respectively. The results of multiple linear regression indicated that there was a negative correlation between the exposure level of Cd, Mn, Zn, Ag, Ba, Tl, or Fe in seminal plasma and seminal fructose (P<0.05), the values of associated β (95%CI) were −0.551 (−0.956, −0.147), −0.315 (−0.419, −0.212), −0.187 (−0.272, −0.103), −0.161 (−0.301, −0.021), −0.188 (−0.314, −0.062), −1.159 (−2.170, −0.147), and −0.153 (−0.230, −0.076), respectively. The BKMR model analysis showed that seminal fructose level decreased with the increase of plasma metal mixed exposure concentration. Compared with all metal exposure at P50, the seminal fructose level decreased by 0.2374 units when all metal exposure was at P75. Seminal plasma Zn [posterior inclusion probabilities (PIPs)=1.0000] had the strongest effect on seminal fructose, followed by Mn (PIPs=0.5872), Se (PIPs=0.5656), and Ba (PIPs=0.5398). The univariate exposure-response curve showed a negative approximate linear correlations between Ba or Mn and seminal fructose, a positive linear correlation between Se and seminal fructose, and an approximate inverted U-shaped association between Zn and seminal fructose. No significant interaction between studied metals was found. Conclusion Mixed metal exposure may lead to decrease of seminal fructose, in which Zn, Mn, Se, and Ba may play an important role. Mn and Zn exposure may reduce the level of seminal fructose, Se may increase the level of seminal fructose, and there may be a threshold effect between Zn exposure and seminal fructose level. No interaction between different metals on seminal fructose is found.