1.Effects of Exogenous Glutathione on Arsenic Distribution and NO Metabolism in Brain of Female Mice Exposed to Sodium Arsenite through Drinking Water
Yan WANG ; Fenghong ZHAO ; Lianying GUO
Journal of Environment and Health 2007;0(12):-
Objective To explore the effects of exogenous glutathione on arsenic distribution and nitric oxide (NO) metabolism in the brain of mice exposed to arsenite through drinking water. Methods Female Kunming mice were randomly divided into 5 groups, eight in each, and the mice were exposed to sodium arsenite through drinking water at doses of 0 mg/L (control) and 50 mg/L arsenic for 4 consecutive weeks, on the fourth week, with the exposure of arsenic, glutathione was given through intraperitoneal injection at doses of 200 mg/kg b.w, 400 mg/kg b.w or 800 mg/kg b.w, respectively for 7 days. In the end of treatment, the samples of blood and brain were collected. Levels of inorganic arsenic (iAs), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA) were determined by HG-AAS method. Activities of nitric oxide synthase (NOS) and the concentrations of NO were determined with kits. Results Compared with those in single arsenic group, glutathione significantly decreased levels of iAs, MMA and total arsenic levels (TAs) in the blood and levels of DMA and TAs in the brain. Activities of NOS and levels of NO in As group were significantly lower than those in control, however administration of glutathione could ameliorate these toxic effects, and NOS activities in groups treated with 400 mg/kg b.w and 800 mg/kg b.w glutathione were significantly higher than those in single arsenic group. Conclusion Exogenous glutathione may promote methylation of arsenic, therefore reduce arsenic levels in both blood and brain. Moreover, it is proposed that administration of exogenous glutathione can ameliorate the adverse effects of arsenic on NO metabolism in the brain via decreasing the brain arsenic burden.
2.Mechanism analysis of Sanhan-Qushi-Wenjing-Tongluo formula treating psoas fasciitis based on biological information technology
Yinping WANG ; Peng FAN ; Yu NIU ; Fenghong GUO ; Ting ZHAO ; Tao LAN ; Hailong WANG ; Chao LIU
International Journal of Traditional Chinese Medicine 2021;43(11):1124-1130
Objective:To explore the effective chemical constituents and target genes of the Sanhan-Qushi-Wenjing-Tongluo formula through the method of network pharmacology, and to further analyze the mechanism of treatoffing psoas fasciitis. Methods:The TCMSP database was used to search and screen the chemical active substances of Sanhan-Qushi-Wenjing-Tongluo formula and its target proteins acting on the human body. At the same time, the GeneCards database platform was used to predict the target of disease and the active ingredient-target network was constructed. Construct a PPI network through the STRING database, search for PPI core genes, and then perform GO enrichment analysis and KEGG enrichment analysis to find the signal pathways involved and construct a target-path network. Results:Through screening, a total of 23 key chemical components and 25 common target proteins was obtained in Sanhan-Qushi-Wenjing-Tongluo formula treating psoas fasciitis; gene analysis of enrichment analysis results include antibiotic response, cyclin-dependent proteins kinase holoenzyme complex, cytokine receptor binding, etc. Kyoto Encyclopedia of Genes and Genomes enrichment analysis results include AGE-RAGE signaling pathway, measles, endocrine resistance, inflammatory bowel disease, etc; the target genes gained which have a higher degree of matching with the above mentioned pathways include IL6, JUN, IL1B, CDK4, CCND1. Conclusion:Sanhan-Qushi-Wenjing-Tongluo formula could treat psoas fasciitis by regulating the target genes such as IL6, JUN, IL1B, CDK4 and CCND1.
3.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
4.BRICS report of 2020: The bacterial composition and antimicrobial resistance profile of clinical isolates from bloodstream infections in China
Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Yuanyuan DAI ; Jiliang WANG ; Haifeng MAO ; Hui DING ; Yongyun LIU ; Yizheng ZHOU ; Hong LU ; Youdong YIN ; Yan JIN ; Hongyun XU ; Lixia ZHANG ; Lu WANG ; Haixin DONG ; Zhenghai YANG ; Fenghong CHEN ; Donghong HUANG ; Guolin LIAO ; Pengpeng TIAN ; Dan LIU ; Yan GENG ; Sijin MAN ; Baohua ZHANG ; Ying HUANG ; Liang GUO ; Junmin CAO ; Beiqing GU ; Yanhong LI ; Hongxia HU ; Liang LUAN ; Shuyan HU ; Lin ZHENG ; Aiyun LI ; Rong XU ; Kunpeng LIANG ; Zhuo LI ; Donghua LIU ; Bo QUAN ; Qiang LIU ; Jilu SHEN ; Yiqun LIAO ; Hai CHEN ; Qingqing BAI ; Xiusan XIA ; Shifu WANG ; Jinhua LIANG ; Liping ZHANG ; Yinqiao DONG ; Xiaoyan QI ; Jianzhong WANG ; Xuefei HU ; Xiaoping YAN ; Dengyan QIAO ; Ling MENG ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2021;14(6):413-426
Objective:To investigate the bacterial composition and antimicrobial resistance profile of clinical isolates from bloodstream infections in China.Methods:The clinical bacterial strains isolated from blood culture were collected during January 2020 to December 2020 in member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS). Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute(CLSI, USA). WHONET 5.6 was used to analyze data.Results:During the study period, 10 043 bacterial strains were collected from 54 hospitals, of which 2 664 (26.5%) were Gram-positive bacteria and 7 379 (73.5%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (38.6%), Klebsiella pneumoniae (18.4%), Staphylococcus aureus (9.9%), coagulase-negative Staphylococci (7.5%), Pseudomonas aeruginosa (3.9%), Enterococcus faecium (3.3%), Enterobacter cloacae (2.8%), Enterococcus faecalis (2.6%), Acinetobacter baumannii (2.4%) and Klebsiella spp (1.8%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 27.6% and 74.4%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci were detected. More than 95% of Staphylococcus aureus were sensitive to rifampicin and SMZco. No vancomycin-resistant Enterococci strains were detected. Extended spectrum β-lactamase (ESBL) producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 48.4%, 23.6% and 36.1%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.3% and 16.1%, respectively; 9.6% of carbapenem-resistant Klebsiella pneumoniae strains were resistant to ceftazidime/avibactam combination. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii. The prevalence rate of carbapenem-resistance of Pseudomonas aeruginosa was 23.2%. Conclusions:The surveillance results in 2020 showed that the main pathogens of bloodstream infection in China were gram-negative bacteria, while Escherichia coli was the most common pathogen, and ESBL-producing strains declined while carbapenem-resistant Klebsiella pneumoniae kept on high level. The proportion and the prevalence of carbapenem-resistant Pseudomonas aeruginosa were on the rise slowly. On the other side, the MRSA incidence got lower in China, while the overall prevalence of vancomycin-resistant Enterococci was low.
5.BRICS report of 2018-2019: the distribution and antimicrobial resistance profile of clinical isolates from blood culture in China
Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Peipei WANG ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Hui DING ; Yongyun LIU ; Haifeng MAO ; Ying HUANG ; Zhenghai YANG ; Yuanyuan DAI ; Guolin LIAO ; Lisha ZHU ; Liping ZHANG ; Yanhong LI ; Hongyun XU ; Junmin CAO ; Baohua ZHANG ; Liang GUO ; Haixin DONG ; Shuyan HU ; Sijin MAN ; Lu WANG ; Zhixiang LIAO ; Rong XU ; Dan LIU ; Yan JIN ; Yizheng ZHOU ; Yiqun LIAO ; Fenghong CHEN ; Beiqing GU ; Jiliang WANG ; Jinhua LIANG ; Lin ZHENG ; Aiyun LI ; Jilu SHEN ; Yinqiao DONG ; Lixia ZHANG ; Hongxia HU ; Bo QUAN ; Wencheng ZHU ; Kunpeng LIANG ; Qiang LIU ; Shifu WANG ; Xiaoping YAN ; Jiangbang KANG ; Xiusan XIA ; Lan MA ; Li SUN ; Liang LUAN ; Jianzhong WANG ; Zhuo LI ; Dengyan QIAO ; Lin ZHANG ; Lanjuan LI ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2021;14(1):32-45
Objective:To investigate the distribution and antimicrobial resistance profile of clinical bacteria isolated from blood culture in China.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2018 to December 2019. Antibiotic susceptibility tests were conducted with agar dilution or broth dilution methods recommended by US Clinical and Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 14 778 bacterial strains were collected from 50 hospitals, of which 4 117 (27.9%) were Gram-positive bacteria and 10 661(72.1%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.2%), Klebsiella pneumoniae (17.0%), Staphylococcus aureus (9.7%), coagulase-negative Staphylococci (8.7%), Pseudomonas aeruginosa (3.7%), Enterococcus faecium (3.4%), Acinetobacter baumannii(3.4%), Enterobacter cloacae (2.9%), Streptococci(2.8%) and Enterococcus faecalis (2.3%). The the prevalence of methicillin-resistant S. aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus were 27.4% (394/1 438) and 70.4% (905/1 285), respectively. No glycopeptide-resistant Staphylococcus was detected. More than 95% of S. aureus were sensitive to amikacin, rifampicin and SMZco. The resistance rate of E. faecium to vancomycin was 0.4% (2/504), and no vancomycin-resistant E. faecalis was detected. The ESBLs-producing rates in no carbapenem-resistance E. coli, carbapenem sensitive K. pneumoniae and Proteus were 50.4% (2 731/5 415), 24.6% (493/2001) and 35.2% (31/88), respectively. The prevalence of carbapenem-resistance in E. coli and K. pneumoniae were 1.5% (85/5 500), 20.6% (518/2 519), respectively. 8.3% (27/325) of carbapenem-resistance K. pneumoniae was resistant to ceftazidime/avibactam combination. The resistance rates of A. baumannii to polymyxin and tigecycline were 2.8% (14/501) and 3.4% (17/501) respectively, and that of P. aeruginosa to carbapenem were 18.9% (103/546). Conclusions:The surveillance results from 2018 to 2019 showed that the main pathogens of bloodstream infection in China were gram-negative bacteria, while E. coli was the most common pathogen, and ESBLs-producing strains were in majority; the MRSA incidence is getting lower in China; carbapenem-resistant E. coli keeps at a low level, while carbapenem-resistant K. pneumoniae is on the rise obviously.
6.BRICS report of 2021: The distribution and antimicrobial resistance profile of clinical bacterial isolates from blood stream infections in China
Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Jiliang WANG ; Hui DING ; Haifeng MAO ; Yizheng ZHOU ; Yan JIN ; Yongyun LIU ; Yan GENG ; Yuanyuan DAI ; Hong LU ; Peng ZHANG ; Ying HUANG ; Donghong HUANG ; Xinhua QIANG ; Jilu SHEN ; Hongyun XU ; Fenghong CHEN ; Guolin LIAO ; Dan LIU ; Haixin DONG ; Jiangqin SONG ; Lu WANG ; Junmin CAO ; Lixia ZHANG ; Yanhong LI ; Dijing SONG ; Zhuo LI ; Youdong YIN ; Donghua LIU ; Liang GUO ; Qiang LIU ; Baohua ZHANG ; Rong XU ; Yinqiao DONG ; Shuyan HU ; Kunpeng LIANG ; Bo QUAN ; Lin ZHENG ; Ling MENG ; Liang LUAN ; Jinhua LIANG ; Weiping LIU ; Xuefei HU ; Pengpeng TIAN ; Xiaoping YAN ; Aiyun LI ; Jian LI ; Xiusan XIA ; Xiaoyan QI ; Dengyan QIAO ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2023;16(1):33-47
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical bacterial isolates from bloodstream infections in China in 2021.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2021 to December 2021. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 11 013 bacterial strains were collected from 51 hospitals, of which 2 782 (25.3%) were Gram-positive bacteria and 8 231 (74.7%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.6%), Klebsiella pneumoniae (18.9%), Staphylococcus aureus (9.8%), coagulase-negative Staphylococci (6.3%), Pseudomonas aeruginosa (3.6%), Enterococcus faecium (3.6%), Acinetobacter baumannii (2.8%), Enterococcus faecalis (2.7%), Enterobacter cloacae (2.5%) and Klebsiella spp (2.1%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 25.3% and 76.8%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci was detected; more than 95.0% of Staphylococcus aureus were sensitive to ceftobiprole. No vancomycin-resistant Enterococci strains were detected. The rates of extended spectrum B-lactamase (ESBL)-producing isolated in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 49.6%, 25.5% and 39.0%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.2% and 15.8%, respectively; 7.9% of carbapenem-resistant Klebsiella pneumoniae was resistant to ceftazidime/avibactam combination. Ceftobiprole demonstrated excellent activity against non-ESBL-producing Escherichia coli and Klebsiella pneumoniae. Aztreonam/avibactam was highly active against carbapenem-resistant Escherichia coli and Klebsiella pneumoniae. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii (5.5% and 4.5%). The prevalence of carbapenem-resistance in Pseudomonas aeruginosa was 18.9%. Conclusions:The BRICS surveillance results in 2021 shows that the main pathogens of blood stream infection in China are gram-negative bacteria, in which Escherichia coli is the most common. The MRSA incidence shows a further decreasing trend in China and the overall prevalence of vancomycin-resistant Enterococci is low. The prevalence of Carbapenem-resistant Klebsiella pneumoniae is still on a high level, but the trend is downwards.