1.Mechanism of the Rpn13-induced activation of Uch37.
Lianying JIAO ; Songying OUYANG ; Neil SHAW ; Gaojie SONG ; Yingang FENG ; Fengfeng NIU ; Weicheng QIU ; Hongtao ZHU ; Li-Wei HUNG ; Xiaobing ZUO ; V ELEONORA SHTYKOVA ; Ping ZHU ; Yu-Hui DONG ; Ruxiang XU ; Zhi-Jie LIU
Protein & Cell 2014;5(8):616-630
Uch37 is a de-ubiquitinating enzyme that is activated by Rpn13 and involved in the proteasomal degradation of proteins. The full-length Uch37 was shown to exhibit low iso-peptidase activity and is thought to be auto-inhibited. Structural comparisons revealed that within a homo-dimer of Uch37, each of the catalytic domains was blocking the other's ubiquitin (Ub)-binding site. This blockage likely prevented Ub from entering the active site of Uch37 and might form the basis of auto-inhibition. To understand the mode of auto-inhibition clearly and shed light on the activation mechanism of Uch37 by Rpn13, we investigated the Uch37-Rpn13 complex using a combination of mutagenesis, biochemical, NMR, and small-angle X-ray scattering (SAXS) techniques. Our results also proved that Uch37 oligomerized in solution and had very low activity against the fluorogenic substrate ubiquitin-7-amino-4-methylcoumarin (Ub-AMC) of de-ubiquitinating enzymes. Uch37Δ(Hb,Hc,KEKE), a truncation removal of the C-terminal extension region (residues 256-329) converted oligomeric Uch37 into a monomeric form that exhibited iso-peptidase activity comparable to that of a truncation-containing the Uch37 catalytic domain only. We also demonstrated that Rpn13C (Rpn13 residues 270-407) could disrupt the oligomerization of Uch37 by sequestering Uch37 and forming a Uch37-Rpn13 complex. Uch37 was activated in such a complex, exhibiting 12-fold-higher activity than Uch37 alone. Time-resolved SAXS (TR-SAXS) and FRET experiments supported the proposed mode of auto-inhibition and the activation mechanism of Uch37 by Rpn13. Rpn13 activated Uch37 by forming a 1:1 stoichiometric complex in which the active site of Uch37 was accessible to Ub.
Binding Sites
;
Catalytic Domain
;
Chromatography, Gel
;
Crystallography, X-Ray
;
Humans
;
Membrane Glycoproteins
;
chemistry
;
genetics
;
metabolism
;
Nuclear Magnetic Resonance, Biomolecular
;
Protein Binding
;
Protein Conformation
;
Protein Multimerization
;
Scattering, Small Angle
;
Ubiquitin Thiolesterase
;
chemistry
;
genetics
;
metabolism
;
Ultracentrifugation
2.Structural biology study of human TNF receptor associated factor 4 TRAF domain.
Fengfeng NIU ; Heng RU ; Wei DING ; Songying OUYANG ; Zhi-Jie LIU
Protein & Cell 2013;4(9):687-694
TRAF4 is a unique member of TRAF family, which is essential for innate immune response, nervous system and other systems. In addition to be an adaptor protein, TRAF4 was identified as a regulator protein in recent studies. We have determined the crystal structure of TRAF domain of TRAF4 (residues 292-466) at 2.60 Å resolution by X-ray crystallography method. The trimericly assembled TRAF4 resembles a mushroom shape, containing a super helical "stalk" which is made of three right-handed intertwined α helixes and a C-terminal "cap", which is divided at residue L302 as a boundary. Similar to other TRAFs, both intermolecular hydrophobic interaction in super helical "stalk" and hydrogen bonds in "cap" regions contribute directly to the formation of TRAF4 trimer. However, differing from other TRAFs, there is an additional flexible loop (residues 421-426), which contains a previously identified phosphorylated site S426 exposing on the surface. This S426 was reported to be phosphorylated by IKKα which is the pre-requisite for TRAF4-NOD2 complex formation and thus to inhibit NOD2-induced NF-κB activation. Therefore, the crystal structure of TRAF4-TRAF is valuable for understanding its molecular basis for its special function and provides structural information for further studies.
Amino Acid Sequence
;
Binding Sites
;
Crystallography, X-Ray
;
Humans
;
Hydrophobic and Hydrophilic Interactions
;
Models, Molecular
;
Phosphorylation
;
Protein Conformation, alpha-Helical
;
Protein Domains
;
Protein Structure, Quaternary
;
Recombinant Proteins
;
chemistry
;
Sequence Homology, Amino Acid
;
TNF Receptor-Associated Factor 4
;
chemistry