1.Application of CRISPR/Cas9 genome editing technology for inhibition of hepatitis B virus replication
Tao WU ; Xiaojuan ZHU ; Lunbiao CUI ; Huan FAN ; Yin CHEN ; Xiling GUO ; Kangchen ZHAO ; Zhiyang SHI ; Fengcai ZHU
Chinese Journal of Microbiology and Immunology 2015;(8):600-605
Objective To evaluate the practicability of using CRISPR/Cas9 genome editing tech-nology for inhibition of hepatitis B virus ( HBV) replication. Methods Two sgRNA targeting sites were de-signed for the S region of HBV genome. The CRISPR/Cas9 expression plasmids specific for HBV were con-structed and then transfected into a cell line expressing HBV genome(HepG2-N10). The cytotoxicity of cells transfected with different expression plasmids were detected by MTT assay. The levels of hepatitis B surface antigen ( HBsAg ) were determined by using chemiluminescent immunoassay ( CLIA ) . The expression of HBV at mRNA level was analyzed by quantitative real-time PCR ( qRT-PCR) . The qPCR was performed for the detection of extracellular and intracellular HBV DNA. The next-generation sequencing ( NGS) Illumina MiSeq Platform was used to analyze HBV genome editing. Results No significant cytotoxic effects were de-tected in HepG2-N10 cells transfected with different expression plasmids. Compared with the cells carrying pCas-Guide-GFP-Scramble, the levels of HBsAg in the supernatants of transfected cell culture harboring pCas-Guide-GFP-G1 and pCas-Guide-GFP-G2 were decreased by 24. 2% (P<0. 05) and 16. 9% (P>0. 05), respectively. The levels of HBsAg in cells transfected with pCas-Guide-GFP-G1 and pCas-Guide-GFP-G2 were respectively decreased by 16. 4% (P>0. 05) and 32. 1% (P>0. 05) as compared with that of pCas-Guide-GFP-Scramble transfected group. The expression of HBV at mRNA level was inhibited as indica-ted by the results of qRT-PCR. Moreover, the levels of extracellular HBV DNA were respectively suppressed by 23% (P>0. 05) and 35% (P<0. 05), and the levels of intracellular HBV DNA were respectively sup-pressed by 7. 2% (P>0. 05) and 18% (P>0. 05). Different types of insertion/deletion mutation were de-tected in HBV genome by high-throughput sequencing. Conclusion HBV-specific CRISPR/Cas9 system could inhibit the expression of HBV gene and the replication of virus. Therefore, the CRISPR/Cas9 genome editing technology might be used as a potential tool for the treatment of persistent HBV infection.
2. Rapid detection of human adenovirus by recombinase polymerase amplification assay and lateral flow dipstick
Kangchen ZHAO ; Yiyue GE ; Lunbiao CUI ; Yin CHENG ; Zhiyang SHI ; Fengcai ZHU ; Minghao ZHOU
Chinese Journal of Experimental and Clinical Virology 2017;31(4):357-361
Objective:
To establish a rapid and sensitive isothermal amplification assay for the detection of human Adenovirus.
Methods:
Primers and probe used for recombinase polymerase amplification(RPA)were designed based on the conserved region of the adenoviruses hexon gene. After optimizing the reaction temperature and times, the products of RPA were detected by capillary electrophoresis and lateral flow dipstick(LFD). Sensitivity and specicity of the assay were evaluated. The diagnostic value of the RPA-LFD assay was verified using clinical samples which were simultaneously tested by real time PCR assay.
Results:
The analytical sensitivity of RPA-LFD assay was 2 copies DNA molecules per reaction and no cross reaction with other pathogens was observed. Compared with real-time PCR assay, the sensitivity, and specificity of the present assay were all 100%.
Conclusions
The RPA-LFD assay developed in this study has the characteristics of high specificity, sensitivity, rapid and no requirement of expensive equipment which provided a new tool for rapid detection of human adenovirus.
3.An engineered xCas12i with high activity, high specificity, and broad PAM range.
Hainan ZHANG ; Xiangfeng KONG ; Mingxing XUE ; Jing HU ; Zikang WANG ; Yinghui WEI ; Haoqiang WANG ; Jingxing ZHOU ; Weihong ZHANG ; Mengqiu XU ; Xiaowen SHEN ; Fengcai YIN ; Zhiyuan AI ; Guangyan HUANG ; Junhui XIA ; Xueqiong SONG ; Hengbin LI ; Yuan YUAN ; Jinhui LI ; Na ZHONG ; Meiling ZHANG ; Yingsi ZHOU ; Hui YANG
Protein & Cell 2023;14(7):538-543