1.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
2.Effect of Anti-reflux Mucosal Ablation on Esophageal Motility in Patients With Gastroesophageal Reflux Disease: A Study Based on High-resolution Impedance Manometry
Chien-Chuan CHEN ; Chu-Kuang CHOU ; Ming-Ching YUAN ; Kun-Feng TSAI ; Jia-Feng WU ; Wei-Chi LIAO ; Han-Mo CHIU ; Hsiu-Po WANG ; Ming-Shiang WU ; Ping-Huei TSENG
Journal of Neurogastroenterology and Motility 2025;31(1):75-85
Background/Aims:
Anti-reflux mucosal ablation (ARMA) is a promising endoscopic intervention for proton pump inhibitor (PPI)-dependent gastroesophageal reflux disease (GERD). However, the effect of ARMA on esophageal motility remains unclear.
Methods:
Twenty patients with PPI-dependent GERD receiving ARMA were prospectively enrolled. Comprehensive self-report symptom questionnaires, endoscopy, 24-hour impedance-pH monitoring, and high-resolution impedance manometry were performed and analyzed before and 3 months after ARMA.
Results:
All ARMA procedures were performed successfully. Symptom scores, including GerdQ (11.16 ± 2.67 to 9.11 ± 2.64, P = 0.026) and reflux symptom index (11.63 ± 5.62 to 6.11 ± 3.86, P = 0.001), improved significantly, while 13 patients (65%) reported discontinuation of PPI. Total acid exposure time (5.84 ± 4.63% to 2.83 ± 3.41%, P = 0.024) and number of reflux episodes (73.05 ± 19.34 to 37.55 ± 22.71, P < 0.001) decreased significantly after ARMA. Improved esophagogastric junction (EGJ) barrier function, including increased lower esophageal sphincter resting pressure (13.89 ± 10.78 mmHg to 21.68 ± 11.5 mmHg, P = 0.034), 4-second integrated relaxation pressure (5.75 ± 6.42 mmHg to 9.99 ± 5.89 mmHg, P = 0.020), and EGJ-contractile integral(16.42 ± 16.93 mmHg · cm to 31.95 ± 21.25 mmHg · cm, P = 0.016), were observed. Esophageal body contractility also increased significantly (distal contractile integral, 966.85 ± 845.84 mmHg · s · cm to 1198.8 ± 811.74 mmHg · s · cm, P = 0.023). Patients with symptom improvement had better pre-AMRA esophageal body contractility.
Conclusions
ARMA effectively improves symptoms and reflux burden, EGJ barrier function, and esophageal body contractility in patients with PPIdependent GERD during short-term evaluation. Longer follow-up to clarify the sustainability of ARMA is needed.
3.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
4.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
5.Effect of Anti-reflux Mucosal Ablation on Esophageal Motility in Patients With Gastroesophageal Reflux Disease: A Study Based on High-resolution Impedance Manometry
Chien-Chuan CHEN ; Chu-Kuang CHOU ; Ming-Ching YUAN ; Kun-Feng TSAI ; Jia-Feng WU ; Wei-Chi LIAO ; Han-Mo CHIU ; Hsiu-Po WANG ; Ming-Shiang WU ; Ping-Huei TSENG
Journal of Neurogastroenterology and Motility 2025;31(1):75-85
Background/Aims:
Anti-reflux mucosal ablation (ARMA) is a promising endoscopic intervention for proton pump inhibitor (PPI)-dependent gastroesophageal reflux disease (GERD). However, the effect of ARMA on esophageal motility remains unclear.
Methods:
Twenty patients with PPI-dependent GERD receiving ARMA were prospectively enrolled. Comprehensive self-report symptom questionnaires, endoscopy, 24-hour impedance-pH monitoring, and high-resolution impedance manometry were performed and analyzed before and 3 months after ARMA.
Results:
All ARMA procedures were performed successfully. Symptom scores, including GerdQ (11.16 ± 2.67 to 9.11 ± 2.64, P = 0.026) and reflux symptom index (11.63 ± 5.62 to 6.11 ± 3.86, P = 0.001), improved significantly, while 13 patients (65%) reported discontinuation of PPI. Total acid exposure time (5.84 ± 4.63% to 2.83 ± 3.41%, P = 0.024) and number of reflux episodes (73.05 ± 19.34 to 37.55 ± 22.71, P < 0.001) decreased significantly after ARMA. Improved esophagogastric junction (EGJ) barrier function, including increased lower esophageal sphincter resting pressure (13.89 ± 10.78 mmHg to 21.68 ± 11.5 mmHg, P = 0.034), 4-second integrated relaxation pressure (5.75 ± 6.42 mmHg to 9.99 ± 5.89 mmHg, P = 0.020), and EGJ-contractile integral(16.42 ± 16.93 mmHg · cm to 31.95 ± 21.25 mmHg · cm, P = 0.016), were observed. Esophageal body contractility also increased significantly (distal contractile integral, 966.85 ± 845.84 mmHg · s · cm to 1198.8 ± 811.74 mmHg · s · cm, P = 0.023). Patients with symptom improvement had better pre-AMRA esophageal body contractility.
Conclusions
ARMA effectively improves symptoms and reflux burden, EGJ barrier function, and esophageal body contractility in patients with PPIdependent GERD during short-term evaluation. Longer follow-up to clarify the sustainability of ARMA is needed.
6.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
7.Effect of Anti-reflux Mucosal Ablation on Esophageal Motility in Patients With Gastroesophageal Reflux Disease: A Study Based on High-resolution Impedance Manometry
Chien-Chuan CHEN ; Chu-Kuang CHOU ; Ming-Ching YUAN ; Kun-Feng TSAI ; Jia-Feng WU ; Wei-Chi LIAO ; Han-Mo CHIU ; Hsiu-Po WANG ; Ming-Shiang WU ; Ping-Huei TSENG
Journal of Neurogastroenterology and Motility 2025;31(1):75-85
Background/Aims:
Anti-reflux mucosal ablation (ARMA) is a promising endoscopic intervention for proton pump inhibitor (PPI)-dependent gastroesophageal reflux disease (GERD). However, the effect of ARMA on esophageal motility remains unclear.
Methods:
Twenty patients with PPI-dependent GERD receiving ARMA were prospectively enrolled. Comprehensive self-report symptom questionnaires, endoscopy, 24-hour impedance-pH monitoring, and high-resolution impedance manometry were performed and analyzed before and 3 months after ARMA.
Results:
All ARMA procedures were performed successfully. Symptom scores, including GerdQ (11.16 ± 2.67 to 9.11 ± 2.64, P = 0.026) and reflux symptom index (11.63 ± 5.62 to 6.11 ± 3.86, P = 0.001), improved significantly, while 13 patients (65%) reported discontinuation of PPI. Total acid exposure time (5.84 ± 4.63% to 2.83 ± 3.41%, P = 0.024) and number of reflux episodes (73.05 ± 19.34 to 37.55 ± 22.71, P < 0.001) decreased significantly after ARMA. Improved esophagogastric junction (EGJ) barrier function, including increased lower esophageal sphincter resting pressure (13.89 ± 10.78 mmHg to 21.68 ± 11.5 mmHg, P = 0.034), 4-second integrated relaxation pressure (5.75 ± 6.42 mmHg to 9.99 ± 5.89 mmHg, P = 0.020), and EGJ-contractile integral(16.42 ± 16.93 mmHg · cm to 31.95 ± 21.25 mmHg · cm, P = 0.016), were observed. Esophageal body contractility also increased significantly (distal contractile integral, 966.85 ± 845.84 mmHg · s · cm to 1198.8 ± 811.74 mmHg · s · cm, P = 0.023). Patients with symptom improvement had better pre-AMRA esophageal body contractility.
Conclusions
ARMA effectively improves symptoms and reflux burden, EGJ barrier function, and esophageal body contractility in patients with PPIdependent GERD during short-term evaluation. Longer follow-up to clarify the sustainability of ARMA is needed.
8.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
9.Banxia Xiexin Decoction suppresses malignant phenotypes of colon cancer cells via PARG/PARP1/NF-κB signaling pathway.
Yu-Qing HUANG ; Jia-Mei WANG ; Heng-Zhou LAI ; Chong XIAO ; Feng-Ming YOU ; Qi-Xuan KUANG ; Yi-Fang JIANG
China Journal of Chinese Materia Medica 2025;50(2):496-506
This study aims to delve into the influences and underlying mechanisms of Banxia Xiexin Decoction(BXD) on the proliferation, apoptosis, invasion, and migration of colon cancer cells. Firstly, the components of BXD in blood were identified by UPLC-MS/MS, and subsequently the content of these components were determined by HPLC. Then, different concentrations of BXD were used to treat both the normal intestinal epithelial cells(NCM460) and the colon cancer cells(HT29 and HCT116). The cell viability and apoptosis were examined by the cell counting kit-8(CCK-8) and flow cytometry, respectively. Western blot was employed to determine the expression of the apoptosis regulators B-cell lymphoma-2(Bcl-2) and Bcl-2-associated X(Bax). The cell wound healing assay and Transwell assay were employed to measure the cell migration and invasion, respectively. Additionally, Western blot was employed to determine the expression levels of epithelial-mesenchymal transition(EMT)-associated proteins, including epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), and vimentin. The protein and mRNA levels of the factors in the poly(ADP-ribose) glycohydrolase(PARG)/poly(ADP-ribose) polymerase 1(PARP1)/nuclear factor kappa-B p65(NF-κB p65) signaling pathway were determined by Western blot and RT-qPCR, respectively. The results demonstrated that following BXD intervention, the proliferation of HT29 and HCT116 cells was significantly reduced. Furthermore, BXD promoted the apoptosis, enhanced the expression of Bcl-2, and suppressed the expression of Bax in colon cancer cells. At the same time, BXD suppressed the cell migration and invasion and augmented the expression of E-cadherin while diminishing the expression of N-cadherin and vimentin. In addition, BXD down-regulated the protein and mRNA levels of PARG, PARP1, and NF-κB p65. In conclusion, BXD may inhibit the malignant phenotypes of colon cancer cells by mediating the PARG/PARP1/NF-κB signaling pathway.
Colonic Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Phenotype
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Apoptosis
;
Cell Movement/drug effects*
;
Neoplasm Invasiveness
;
HCT116 Cells
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
Humans
;
Poly (ADP-Ribose) Polymerase-1
;
Glycoside Hydrolases
;
bcl-2-Associated X Protein
;
NF-kappa B p50 Subunit
10.Banxia Xiexin Decoction reshapes tryptophan metabolism to inhibit progression of colon cancer.
Yi-Fang JIANG ; Yu-Qing HUANG ; Heng-Zhou LAI ; Xue-Ke LI ; Liu-Yi LONG ; Feng-Ming YOU ; Qi-Xuan KUANG
China Journal of Chinese Materia Medica 2025;50(5):1310-1320
This study explores the effect and mechanism of Banxia Xiexin Decoction(BXD) in inhibiting colon cancer progression by reshaping tryptophan metabolism. Balb/c mice were assigned into control, model, low-dose BXD(BXD-L), and high-dose BXD(BXD-H) groups. Except the control group, the other groups were subcutaneously injected with CT26-Luc cells for the modeling of colon cancer, which was followed by the intervention with BXD. Small animal live imaging was employed to monitor tumor growth, and the tumor volume and weight were measured. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in mouse tumors. Immunohistochemistry was used to detect Ki67 expression in tumors. Immunofluorescence and flow cytometry were used to detect the infiltration and number changes of CD3~+/CD8~+ T cells in the tumor tissue. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interferon-gamma(IFN-γ) and interleukin-2(IL-2) in tumors. Targeted metabolomics was employed to measure the level of tryptophan(Trp) in the serum, and the Trp content in the tumor tissue was measured. Western blot and RT-qPCR were employed to determine the protein and mRNA levels, respectively, of indoleamine 2,3-dioxygenase 1(IDO1), MYC proto-oncogene, and solute carrier family 7 member 5(SLC7A5) in the tumor tissue. Additionally, a co-culture model with CT26 cells and CD8~+ T cells was established in vitro and treated with the BXD-containing serum. The cell counting kit-8(CCK-8) assay was used to examine the viability of CT26 cells. The content of Trp in CT26 cells and CD8~+ T cells, as well as the secretion of IFN-γ and IL-2 by CD8~+ T cells, was measured. RT-qPCR was used to determine the mRNA levels of MYC and SLC7A5 in CT26 cells. The results showed that BXD significantly inhibited the tumor growth, reduced the tumor weight, and decreased the tumor volume in the model mice. In addition, the model mice showed sparse arrangement of tumor cells, varying degrees of patchy necrosis, and downregulated expression of Ki67 in the tumor tissue. BXD elevated the levels of IFN-γ and IL-2 in the tumor tissue, while upregulating the ratio of CD3~+/CD8~+ T cells and lowering the levels of Trp, IDO1, MYC, and SLC7A5. The co-culture experiment showed that BXD-containing serum reduced Trp uptake by CT26 cells, increased Trp content in CD8~+T cells, enhanced IL-2 and IFN-γ secretion of CD8~+T cells, and down-regulated the mRNA levels of MYC and SLC7A5 in CT26 cells. In summary, BXD can inhibit the MYC/SLC7A5 pathway to reshape Trp metabolism and adjust Trp uptake by CD8~+ T cells to enhance the cytotoxicity, thereby inhibiting the development of colon cancer.
Animals
;
Tryptophan/metabolism*
;
Colonic Neoplasms/pathology*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred BALB C
;
Humans
;
Cell Line, Tumor
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism*
;
Female
;
Disease Progression
;
Cell Proliferation/drug effects*
;
Proto-Oncogene Mas
;
Male

Result Analysis
Print
Save
E-mail