1.Comprehensive quality evaluation of Tangwei capsule based on HPLC-QAMS multi-index quantitative determination combined with chemometrics and EW-TOPSIS method.
Hui QIU ; Feiying WEN ; Jian FANG ; Hongyuan CHEN
Journal of Zhejiang University. Medical sciences 2023;52(2):195-206
OBJECTIVES:
To detect the contents of Tangwei capsule main components with high performance liquid chromatography-quantitative analysis of multicomponents by single marker (HPLC-QAMS) method and to evaluate the quality with chemometrics and entropy weight-technique for order preference by similarity to an ideal solution (EW-TOPSIS).
METHODS:
A symmetry C18 column and 0.1% formic acid-acetonitrile as mobile phase were used for HPLC of Tangwei capsule. The contents of 3'-hydroxypuerarin, puerarin, 3'-methoxypuerarin, methylnissolin-3-O-glucoside, calycosin, formononetin, rosmarinic acid, salvianolic acid B, dihydrotanshinone Ⅰ, cryptotanshinone, tanshinone Ⅰ, tanshinone ⅡA and cucurbitacin B in 15 batches of Tangwei capsule were determined simultaneously. The quality differences of 15 batches of samples were analyzed by chemometrics and EW-TOPSIS.
RESULTS:
The HPLC-UV showed that 13 components had good linear relationships in corresponding concentration ranges (r≥0.9991). The relative standard deviations (RSD) of precision, repeatability and stability were all less than 2.00%. The average recovery rates were between 96.86% and 100.13%, and RSD were all less than 2.00%. Cluster analysis showed that 15 batches of samples were clustered into 3 groups. Partial least squares-discriminant analysis showed that salvianolic acid B, formononetin, puerarin, 3'-methoxypuerarin and rosmarinic acid were the main potential markers affecting the quality of Tangwei capsule. EW-TOPSIS analysis showed that the quality of S12-S15 was superior.
CONCLUSIONS
The analytical method established in this study can be used for the comprehensive evaluation of the quality of Tangwei capsule to provide laboratory support for its quality control and overall evaluation.
Drugs, Chinese Herbal
;
Chromatography, High Pressure Liquid/methods*
;
Chemometrics
;
Entropy
2.Feixin Decoction Treats Hypoxic Pulmonary Hypertension by Regulating Pyroptosis in PASMCs via PPARγ/NF-κB/NLRP3 Signaling Pathway
Junlan TAN ; Xianya CAO ; Runxiu ZHENG ; Wen ZHANG ; Chao ZHANG ; Jian YI ; Feiying WANG ; Xia LI ; Jianmin FAN ; Hui LIU ; Lan SONG ; Aiguo DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):1-9
ObjectiveTo investigate the mechanism by which Feixin decoction treats hypoxic pulmonary hypertension (HPH) by regulating the peroxisome proliferator-activated receptor gamma (PPARγ)/nuclear factor-kappa B (NF-κB)/NOD-like receptor pyrin domain containing 3 (NLRP3) signaling pathway. MethodsForty-eight male SD rats were randomly allocated into normal, hypoxia, and low-, medium- and high-dose (5.85, 11.7, 23.4 g·kg-1, respectively) Feixin decoction groups, with 8 rats in each group. Except the normal group, the remaining five groups were placed in a hypoxia chamber with an oxygen concentration of (10.0±0.5)% for 8 h per day, 28 days, and administrated with corresponding drugs during the modeling process. After 4 weeks of treatment, echocardiographic parameters [pulmonary artery acceleration time (PAT), pulmonary artery ejection time (PET), right ventricular anterior wall thickness (RVAWd), and tricuspid annular plane systolic excursion (TAPSE)] were measured for each group. The right ventricular systolic pressure (RVSP) was measured by the right heart catheterization method, and the right ventricular hypertrophy index (RVHI) was calculated by weighing the heart. The pathological changes in pulmonary arterioles were observed by hematoxylin-eosin staining. The co-localization of α-smooth muscle actin (α-SMA) with NLRP3, N-terminal gasdermin D (N-GSDMD), and cysteinyl aspartate-specific proteinase-1 (Caspase-1) in pulmonary arteries was detected by immunofluorescence. The protein levels of PPARγ, NF-κB, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), N-GSDMD, interleukin-1β (IL-1β), interleukin-18(IL-18), and cleaved Caspase-1 in the lung tissue was determined by Western blot. The ultrastructural changes in pulmonary artery smooth muscle cells (PASMCs) were observed by transmission electron microscopy. ResultsCompared with the normal group, the hypoxia group showed increased RVSP and RVHI (P<0.01), decreased right heart function (P<0.01), increased pulmonary vascular remodeling (P<0.01), increased co-localization of α-SMA with NLRP3, N-GSDMD, and Caspase-1 in pulmonary arterioles (P<0.01), up-regulated protein levels of NF-κB, NLRP3, ASC, N-GSDMD, IL-1β, IL-18, and cleaved Caspase-1 in the lung tissue (P<0.05, P<0.01), a down-regulated protein level of PPARγ (P<0.05, P<0.01), and pyroptosis in PASMCs. Compared with the hypoxia group, Feixin decoction reduced RVSP and RVHI, improved the right heart function and ameliorated pulmonary vascular remodeling (P<0.05, P<0.01), decreased the co-localization of α-SMA with NLRP3, N-GSDMD, and Caspase-1 (P<0.05, P<0.01), down-regulated the protein levels of NF-κB, NLRP3, ASC, N-GSDMD, IL-1β, IL-18, and cleaved Caspase-1 in the lung tissue (P<0.05, P<0.01), up-regulated the protein level of PPARγ (P<0.05, P<0.01), and alleviated pyroptosis in PASMCs. ConclusionFeixin decoction can ameliorate pulmonary vascular remodeling and right heart dysfunction in chronically induced HPH rats by regulating pyroptosis in PASMCs through the PPARγ/NF-κB/NLRP3 pathway.