1.Advances in the role of protein post-translational modifications in circadian rhythm regulation.
Zi-Di ZHAO ; Qi-Miao HU ; Zi-Yi YANG ; Peng-Cheng SUN ; Bo-Wen JING ; Rong-Xi MAN ; Yuan XU ; Ru-Yu YAN ; Si-Yao QU ; Jian-Fei PEI
Acta Physiologica Sinica 2025;77(4):605-626
The circadian clock plays a critical role in regulating various physiological processes, including gene expression, metabolic regulation, immune response, and the sleep-wake cycle in living organisms. Post-translational modifications (PTMs) are crucial regulatory mechanisms to maintain the precise oscillation of the circadian clock. By modulating the stability, activity, cell localization and protein-protein interactions of core clock proteins, PTMs enable these proteins to respond dynamically to environmental and intracellular changes, thereby sustaining the periodic oscillations of the circadian clock. Different types of PTMs exert their effects through distincting molecular mechanisms, collectively ensuring the proper function of the circadian system. This review systematically summarized several major types of PTMs, including phosphorylation, acetylation, ubiquitination, SUMOylation and oxidative modification, and overviewed their roles in regulating the core clock proteins and the associated pathways, with the goals of providing a theoretical foundation for the deeper understanding of clock mechanisms and the treatment of diseases associated with circadian disruption.
Protein Processing, Post-Translational/physiology*
;
Circadian Rhythm/physiology*
;
Humans
;
Animals
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Phosphorylation
;
Acetylation
;
Ubiquitination
;
Sumoylation
2.A new tetralone glycoside in leaves of Cyclocarya paliurus.
Ting-Si GUO ; Qin HUANG ; Qi-Qi HU ; Fei-Bing HUANG ; Qing-Ling XIE ; Han-Wen YUAN ; Wei WANG ; Yu-Qing JIAN
China Journal of Chinese Materia Medica 2025;50(1):146-167
The chemical constituents from leaves of Cyclocarya paliurus were isolated and purified by chromatography on silica gel, C_(18) reverse-phase silica gel, and Sephadex LH-20 gel, as well as semi-preparative high-performance liquid chromatography. Six compounds were identified by UV, IR, NMR, MS, calculated ECD, and comparison with literature data as cyclopaloside D(1), boscialin(2),(5R,6S)-6-hydroxy-6-[(E)-3-hydroxybut-1-enyl]-1,1,5-trimethylcyclohexanone(3), 3S,5R-dihydroxy-6R,7-megastigmadien-9-one(4), 3S,5R-dihydroxy-6S,7-megastigmadien-9-one(5), and gingerglycolipid A(6), respectively. Among them, compound 1 was identified as a new tetralone glycoside, and compounds 2-6 were isolated from leaves of C. paliurus for the first time. Furthermore, compound 1 exhibited strong antioxidant activity, with the IC_(50) of(454.20±31.81)μmol·L~(-1) and(881.82±42.31)μmol·L~(-1) in scavenging DPPH and ABTS free radicals, respectively.
Plant Leaves/chemistry*
;
Glycosides/isolation & purification*
;
Juglandaceae/chemistry*
;
Tetralones/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
3.Innovation and application of traditional Chinese medicine dispensing promoted through integration of whole-process data elements.
Huan-Fei YANG ; Si-Yu LI ; Chen-Qian YU ; Jian-Kun WU ; Fang LIU ; Li-Bin JIANG ; Chun-Jin LI ; Xiang-Fei SU ; Wei-Guo BAI ; Hua-Qiang ZHAI ; Shi-Yuan JIN ; Yong-Yan WANG
China Journal of Chinese Materia Medica 2025;50(11):3189-3196
As a new type of production factor that can empower the development of new quality productivity, the data element is an important engine to promote the high quality development of the industry. Traditional Chinese medicine(TCM) dispensing is the most basic work of TCM clinical pharmacy, and its quality directly affects the clinical efficacy of TCM. The integration of data elements and TCM dispensing can stimulate the innovation and vitality of the TCM dispensing industry and promote the high-quality and sustainable development of the industry. A large-scale, detailed, and systematic study on TCM dispensing was conducted. The innovative practice path of data fusion construction in the whole process of TCM dispensing was investigated by integrating the digital resources "nine full activities" of TCM dispensing, creating the digital dictionary of "TCM clinical information data elements", and exploring innovative applications of TCM dispensing driven by data and technology, so as to promote the standardized, digital, and intelligent development of TCM dispensing in medical health services. The research content of this project was successfully selected as the second batch of "Data element×" typical cases of National Data Administration in 2024, which is the only selected case in the field of TCM.
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal
;
Humans
4.Data Spaces in Medicine and Health: Technologies, Applications, and Challenges.
Wan-Fei HU ; Si-Zhu WU ; Qing QIAN
Chinese Medical Sciences Journal 2025;40(1):18-28
Data space, as an innovative data management and sharing model, is emerging in the medical and health sectors. This study expounds on the conceptual connotation of data space and delineates its key technologies, including distributed data storage, standardization and interoperability of data sharing, data security and privacy protection, data analysis and mining, and data space assessment. By analyzing the real-world cases of data spaces within medicine and health, this study compares the similarities and differences across various dimensions such as purpose, architecture, data interoperability, and privacy protection. Meanwhile, data spaces in these fields are challenged by the limited computing resources, the complexities of data integration, and the need for optimized algorithms. Additionally, legal and ethical issues such as unclear data ownership, undefined usage rights, risks associated with privacy protection need to be addressed. The study notes organizational and management difficulties, calling for enhancements in governance framework, data sharing mechanisms, and value assessment systems. In the future, technological innovation, sound regulations, and optimized management will help the development of the medical and health data space. These developments will enable the secure and efficient utilization of data, propelling the medical industry into an era characterized by precision, intelligence, and personalization.
Humans
;
Computer Security
;
Information Dissemination
;
Data Management
;
Information Storage and Retrieval
;
Data Mining
5.Application progress on functional insoles in the prevention and treatment of diabetic foot.
Heng-Yu LIU ; Zhen-de JIANG ; Yao-Kuan RUAN ; Qiu-Ju LI ; Si-Yuan CHEN ; Shun-Yu WEI ; Nan MEI ; Chou WU ; Fei CHANG
China Journal of Orthopaedics and Traumatology 2025;38(9):969-975
Diabetic foot (DF) is one of the most serious chronic complications of diabetes. The incidence rate among global diabetes patients is as high as 15% to 25%, and about 50% of patients will develop contralateral foot ulcers within 5 years after the first unilateral ulcer. As a non-invasive prevention and control solution, the application progress of functional insoles is mainly reflected in the following aspects:(1) Material innovation. The application of new composite materials and smart materials has significantly enhanced the pressure reduction effect and comfort. (2) Structural optimization. The development of multi-layer design and local pressure reduction structure has achieved more precise pressure distribution regulation. (3) Manufacturing process. 3D printing and parametric design have enabled the personalized customization of functional insoles. (4) Intelligent monitoring. It integrates functions such as pressure sensing and temperature monitoring, achieving real-time monitoring and early warning of foot conditions. Clinical research has confirmed that personalized functional insoles could reduce the incidence of foot ulcers and shorten the healing time of ulcers. At present, the research hotspots mainly focus on the development of smart materials, the construction of multi-functional integration and remote monitoring systems. However, in-depth research is still needed in the aspects of biomechanical mechanisms, standardized evaluation systems and long-term efficacy assessment. The development of future functional insoles should focus on the coordinated advancement of "personalization-intelligence-standardization", with the aim of providing more effective solutions for the prevention and treatment of DF.
Humans
;
Diabetic Foot/therapy*
;
Foot Orthoses
6.Clinical Applications of Circulating Tumor DNA in Response Evaluation and Relapse Monitoring of Primary Mediastinal Large B-Cell Lymphoma.
Lu PAN ; Xin-Miao JIANG ; Yan TENG ; Ning WANG ; Ling HUANG ; Han-Guo GUO ; Si-Chu LIU ; Xiao-Juan WEI ; Fei-Li CHEN ; Zhan-Li LIANG ; Wen-Yu LI
Journal of Experimental Hematology 2025;33(2):407-415
OBJECTIVE:
To explore the clinical significance of circulating tumor DNA (ctDNA) in response evaluation and relapse monitoring for patients with primary mediastinal large B-cell lymphoma (PMBCL).
METHODS:
The clinical characteristics, efficacy and survival of 38 PMBCL patients in our hospital from January 2010 to April 2020 were retrospectively analyzed. The ctDNA monitoring was conducted by targeted next-generation sequencing (NGS).
RESULTS:
Among the 38 patients, 26 cases were female, and 32 cases were diagnosed with Ann Arbor stage I-II. The 5-year overall survival (OS) rate and progression-free survival (PFS) rate were 74.7% and 61.7%, respectively. Males and those with high aaIPI scores (3 points) had a relatively poor prognosis. The NGS results of 23 patients showed that STAT6 (65.2%), SOCS1 (56.5%), and TNFAIP3 (56.5%) were the most common mutated genes. Patients with stable disease (SD)/progressive disease (PD) exhibited enrichment in cell cycle, FoxO, and TNF signaling pathways. A total of 29 patients underwent end-of-treatment PET/CT (EOT PET/CT), and 16 of them received ctDNA monitoring with 12 negative. Among 6 patients with EOT PET/CT positive (Deauville 4), 4 underwent ctDNA monitoring, and 3 of them were negative, being still in continuous remission without any subsequent anti-tumor therapy.
CONCLUSION
CtDNA may be combined with PET/CT to assess efficacy, monitor relapse, and guide treatment of PMBCL.
Humans
;
Circulating Tumor DNA/blood*
;
Female
;
Mediastinal Neoplasms
;
Male
;
Retrospective Studies
;
High-Throughput Nucleotide Sequencing
;
Prognosis
;
Lymphoma, Large B-Cell, Diffuse/genetics*
;
Middle Aged
;
Adult
;
Aged
;
Neoplasm Recurrence, Local
;
Mutation
7.Network Pharmacology and in vitro Experimental Verification on Intervention of Oridonin on Non-Small Cell Lung Cancer.
Ke CHANG ; Li-Fei ZHU ; Ting-Ting WU ; Si-Qi ZHANG ; Zi-Cheng YU
Chinese journal of integrative medicine 2025;31(4):347-356
OBJECTIVE:
To explore the key target molecules and potential mechanisms of oridonin against non-small cell lung cancer (NSCLC).
METHODS:
The target molecules of oridonin were retrieved from SEA, STITCH, SuperPred and TargetPred databases; target genes associated with the treatment of NSCLC were retrieved from GeneCards, DisGeNET and TTD databases. Then, the overlapping target molecules between the drug and the disease were identified. The protein-protein interaction (PPI) was constructed using the STRING database according to overlapping targets, and Cytoscape was used to screen for key targets. Molecular docking verification were performed using AutoDockTools and PyMOL software. Using the DAVID database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted. The impact of oridonin on the proliferation and apoptosis of NSCLC cells was assessed using cell counting kit-8, cell proliferation EdU image kit, and Annexin V-FITC/PI apoptosis kit respectively. Moreover, real-time quantitative PCR and Western blot were used to verify the potential mechanisms.
RESULTS:
Fifty-six target molecules and 12 key target molecules of oridonin involved in NSCLC treatment were identified, including tumor protein 53 (TP53), Caspase-3, signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase kinase 8 (MAPK8), and mammalian target of rapamycin (mTOR). Molecular docking showed that oridonin and its key target molecules bind spontaneously. GO and KEGG enrichment analyses revealed cancer, apoptosis, phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), and other signaling pathways. In vitro experiments showed that oridonin inhibited the proliferation, induced apoptosis, downregulated the expression of Bcl-2 and Akt, and upregulated the expression of Caspase-3.
CONCLUSION
Oridonin can act on multiple targets and pathways to exert its inhibitory effects on NSCLC, and its mechanism may be related to upregulating the expression of Caspase-3 and downregulating the expressions of Akt and Bcl-2.
Diterpenes, Kaurane/chemistry*
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Humans
;
Network Pharmacology
;
Lung Neoplasms/pathology*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Cell Line, Tumor
;
Signal Transduction/drug effects*
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Reproducibility of Results
;
Gene Ontology
8.Sini Powder Alleviates Stress Response and Suppresses Hepatocellular Carcinoma Development by Restoring Gut Microbiota.
Si MEI ; Zhe DENG ; Fan-Ying MENG ; Qian-Qian GUO ; He-Yun TAO ; Lin ZHANG ; Chang XI ; Qing ZHOU ; Xue-Fei TIAN
Chinese journal of integrative medicine 2025;31(9):802-811
OBJECTIVES:
To explore the underlying pharmacological mechanisms and its potential effects of Chinese medicine herbal formula Sini Powder (SNP) on hepatocellular carcinoma (HCC).
METHODS:
The active components of SNP and their in vivo distribution were identified using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Construction of component-target-disease networks, protein-protein interaction network, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and molecular docking were employed to analyze the active components and anti-HCC mechanisms of SNP. Cell viability assay and wound healing assay were utilized to confirm the effect of SNP-containing serum (2.5%, 5.0%, 10%, 20%, and 40%), isoprenaline or propranolol (both 10, 100, and 1,000 µ mol/L) on proliferation and migration of HepG 2 or Huh7 cells. Meanwhile, the effect of isoprenaline or propranolol on the β 2 adrenergic receptor (ADRB2) mRNA expression on HepG2 cells were measured by real-time quantitative reverse transcription (RT-qPCR). Mice with subcutaneous tumors were either subjected to chronic restraint stress (CRS) followed by SNP administration (364 mg/mL) or directly treated with SNP (364 mg/mL). These two parallel experiments were performed to validate the effects of SNP on stress responses. Stress-related proteins and hormones were quantified using RT-qPCR, enzyme-linked immunosorbent assay, and immunohistochemistry. Metagenomic sequencing was performed to confirm the influence of SNP on the gut microbiota in the tumor-bearing CRS mice.
RESULTS:
The distribution of the 12 active components of SNP was confirmed in various tissues and feces. Network pharmacology analysis confirmed the anti-HCC effects of the 5 active components. The potential anti-HCC mechanisms of SNP may involve the epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC) and signal transducer and activator of transcription 3 (STAT3) pathways. SNP-containing serum inhibited the proliferation of HepG2 and Huh7 cells at concentrations of 2.5% and 5.0%, respectively, after 24 h of treatment. Furthermore, SNP suppressed tumor progression in tumor-bearing mice exposed to CRS. SNP treatment also downregulated the expressions of stress-related proteins and pro-inflammatory cytokines, primarily by modulating the gut microbiota. Specifically, the abundance of Alistipes and Prevotella, which belong to the phylum Bacteroidetes, increased in the SNP-treated group, whereas Lachnospira, in the phylum Firmicutes, decreased.
CONCLUSION
SNP can combat HCC by alleviating stress responses through the regulation of gut microbiota.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Liver Neoplasms/microbiology*
;
Carcinoma, Hepatocellular/microbiology*
;
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Powders
;
Cell Proliferation/drug effects*
;
Mice
;
Molecular Docking Simulation
;
Cell Line, Tumor
;
Hep G2 Cells
;
Receptors, Adrenergic, beta-2/genetics*
;
Stress, Physiological/drug effects*
;
Cell Movement/drug effects*
;
Male
;
Protein Interaction Maps/drug effects*
;
Cell Survival/drug effects*
;
Proto-Oncogene Mas
9.Effects of nebulized self-developed Zangsiwei Qingfei Mixture on airway inflammation in cigarette smoke-induced COPD mice and a network pharmacology analysis.
Meizhi LI ; Fei PENG ; Quan ZHANG ; Yanna WU ; Jingping SUN ; Si LEI ; Shangjie WU
Journal of Central South University(Medical Sciences) 2025;50(7):1113-1125
OBJECTIVES:
Chronic obstructive pulmonary disease (COPD) is a major chronic respiratory condition with high morbidity and mortality, imposing a serious economic and public health burden. The World Health Organization ranks COPD among the top 4 chronic diseases worldwide. Zangsiwei Qingfei Mixture (ZSWQF), a novel Tibetan herbal formulation independently developed by our research team, has shown therapeutic potential for chronic respiratory diseases. This study aims to evaluate the effects of aerosolized ZSWQF on cigarette smoke-induced COPD in mice and explore its underlying mechanisms.
METHODS:
Thirty C57 mice were randomly divided into a Control group, a COPD group, and a ZSWQF group. The Control group received saline aerosol inhalation without cigarette smoke exposure; both the COPD group and the ZSWQF group were exposed to cigarette smoke, with the former receiving saline inhalation and the latter treated with ZSWQF aerosol. White blood cell (WBC) count was performed using a fully automatic blood cell analyzer. Serum, alanine transaminase (ALT), and serum creatinine (SCr), as well as interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α levels in serum and bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). BALF cell classification was determined using a hematology analyzer. Lung function was assessed with a small animal pulmonary function system, including airway resistance (RI) and cyclic dynamic compliance (CyDN). Lung tissues were stained with hematoxylin and eosin (HE), and mean linear intercept (MLI) and destruction index (DI) were calculated to evaluate morphological changes. Network pharmacology was applied to identify disease-related and ZSWQF-related targets, followed by intersection and protein-protein interaction (PPI) network analysis, and enrichment analysis of biological functions and pathways. Primary type II alveolar epithelial cell (AEC II) from SD rats were isolated and divided into a Control group, a lipopolysaccharide (LPS) group, a normal serum group, a water extract of ZSWQF (W-ZSWQF) group, a ZSWQF containing serum group, and a MLN-4760 [angiotensin-converting enzyme (ACE) 2 inhibitor]. Western blotting was performed to assess protein expression of ACE, p38 [a mitogen-activated protein kinase (MAPK)], phospho (p)-p38, extracellular signal-regulated kinases 1 and 2 (ERK1/2), p-ERK1/2, c-Jun N-terminal kinase (JNK), p-JNK, inhibitor of nuclear factor-kappa B alpha (IκBα), p-IκBα, and p-p65 subunit of nuclear factor-kappa B (NF-κBp65).
RESULTS:
WBC counts were significantly higher in the COPD group than in controls (P<0.01) and decreased following ZSWQF treatment (P<0.05). No significant intergroup differences were found in organ weights, ALT, or SCr (all P>0.05). Serum and BALF levels of IL-6, IL-8, and TNF-α, as well as total BALF cells, neutrophils, and macrophages, were elevated in the COPD group compared with controls and reduced by ZSWQF treatment (P<0.05). COPD mice exhibited increased RI, decreased CyDN, marked alveolar congestion, inflammatory infiltration, thickened septa, and higher MLI and DI values versus controls (P<0.05); ZSWQF treatment significantly reduced MLI and DI (P<0.05). Network pharmacology identified 151 potential therapeutic targets for ZSWQF against COPD, with key nodes including TNF, IL-6, protein kinase B (Akt) 1, albumin (ALB), tumor protein p53 (TP53), non-receptor tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT) 3, matrix metalloproteinase (MMP)-9, and beta-catenin (CTNNB1). Enrichment analysis indicates involvement of cancer-related, phosphatidylinositol 3-kinase (PI3K)/Akt, hypoxia-inducible factor (HIF)-1, calcium, and MAPK signaling pathways. Western blotting results showed that compared with the LPS group, AEC II treated with ZSWQF-containing serum exhibited decreased expression of ACE, p-p38/p38, p-ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκBα, and p-NF-κBp65, while ACE2 expression was upregulated, consistent with the MAPK/nuclear factor-kappa B (NF-κB) pathway regulation predicted by network pharmacology.
CONCLUSIONS
Aerosolized ZSWQF provides protective effects in COPD mice by reducing airway inflammation and remodeling.
Animals
;
Pulmonary Disease, Chronic Obstructive/etiology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Mice, Inbred C57BL
;
Male
;
Network Pharmacology
;
Smoke/adverse effects*
;
Bronchoalveolar Lavage Fluid
;
Administration, Inhalation
;
Inflammation/drug therapy*
;
Tumor Necrosis Factor-alpha
;
Lung/drug effects*
;
Interleukin-6/blood*
10.An observational study on the clinical effects of in-line mechanical in-exsufflation in mechanical ventilated patients.
Bilin WEI ; Huifang ZHENG ; Xiang SI ; Wenxuan YU ; Xiangru CHEN ; Hao YUAN ; Fei PEI ; Xiangdong GUAN
Chinese Critical Care Medicine 2025;37(3):262-267
OBJECTIVE:
To evaluate the safety and clinical therapeutic effect of in-line mechanical in-exsufflation to assist sputum clearance in patients with invasive mechanical ventilation.
METHODS:
A prospective observational study was conducted at the department of critical care medicine, the First Affiliated Hospital of Sun Yat-sen University from April 2022 to May 2023. Patients who were invasively ventilated and treated with in-line mechanical in-exsufflation to assist sputum clearance were enrolled. Baseline data were collected. Sputum viscosity, oxygenation index, parameters of ventilatory function and respiratory mechanics, clinical pulmonary infection score (CPIS) and vital signs before and after day 1, 2, 3, 5, 7 of use of the in-line mechanical in-exsufflation were assessed and recorded. Statistical analyses were performed by using generalized estimating equation (GEE).
RESULTS:
A total of 13 invasively ventilated patients using in-line mechanical in-exsufflation were included, all of whom were male and had respiratory failure, with the main cause being cervical spinal cord injury/high-level paraplegia (38.46%). Before the use of the in-line mechanical in-exsufflation, the proportion of patients with sputum viscosity of grade III was 38.46% (5/13) and decreased to 22.22% (2/9) 7 days after treatment with in-line mechanical in-exsufflation. With the prolonged use of the in-line mechanical in-exsufflation, the patients' CPIS scores tended to decrease significantly, with a mean decrease of 0.5 points per day (P < 0.01). Oxygenation improved significantly, with the oxygenation index (PaO2/FiO2) increasing by a mean of 23.3 mmHg (1 mmHg ≈ 0.133 kPa) per day and the arterial partial pressure of oxygen increasing by a mean of 12.6 mmHg per day (both P < 0.01). Compared to baseline, the respiratory mechanics of the patients improved significantly 7 days after in-line mechanical in-exsufflation use, with a significant increase in the compliance of respiratory system (Cst) [mL/cmH2O (1 cmH2O ≈ 0.098 kPa): 55.6 (50.0, 58.0) vs. 40.9 (37.5, 50.0), P < 0.01], and both the airway resistance and driving pressure (DP) were significantly decreased [airway resistance (cmH2O×L-1×s-1): 9.6 (6.9, 10.5) vs. 12.0 (10.0, 13.0), DP (cmH2O): 9.0 (9.0, 12.0) vs. 11.0 (10.0, 15.0), both P < 0.01]. At the same time, no new lung collapse was observed during the treatment period. No significant discomfort was reported by patients, and there were no substantial changes in heart rate, systolic blood pressure, diastolic blood pressure, and mean arterial pressure before and after the in-line mechanical in-exsufflation treatment.
CONCLUSIONS
The combined use of the in-line mechanical in-exsufflation to assist sputum clearance in patients on invasive mechanical ventilation can effectively improve sputum characteristics, oxygenation and respiratory mechanics. The in-line mechanical in-exsufflation was well tolerated by the patients, with no treatment-related adverse events, which demonstrated its effectiveness and safety.
Humans
;
Prospective Studies
;
Respiration, Artificial/methods*
;
Respiratory Insufficiency/therapy*
;
Sputum

Result Analysis
Print
Save
E-mail