1.Fecal Microbiota Transplantation and the Brain Microbiota in Neurological Diseases.
Clinical Endoscopy 2016;49(6):579-579
No abstract available.
Brain*
;
Fecal Microbiota Transplantation*
;
Microbiota*
2.Clinical Usefulness of Fecal Microbiota Transplantation.
Journal of Neurogastroenterology and Motility 2017;23(2):149-150
No abstract available.
Fecal Microbiota Transplantation*
3.Is Expansion of Fecal Microbiota Transplantation Available?.
The Korean Journal of Gastroenterology 2017;70(4):211-213
No abstract available.
Fecal Microbiota Transplantation*
5.Fecal Microbiota Transplantation as a Treatment of Recurrent Clostridium difficile Infection: Where Are We Now and Where Are We Heading?.
The Korean Journal of Gastroenterology 2017;69(4):203-205
No abstract available.
Clostridium difficile*
;
Clostridium*
;
Fecal Microbiota Transplantation*
;
Head*
6.Chinese expert consensus on screening and management of fecal microbiota transplantation donors (2022 edition).
Chinese Journal of Gastrointestinal Surgery 2022;25(9):757-765
Fecal microbiota transplantation (FMT) has been recommended by clinical practical guidelines and consensus for the treatment of a variety of intestinal diseases, but in more and more medical institutions trying to develop this technology in clinical practice, how to screen and manage donors has become an urgent need for regulation. In view of this, based on evidence-based medical evidence, Society of Parenteral and Enteral Nutrition of Chinese Medical Association and Microecology Professional Committee of Shanghai Preventive Medicine Association jointly formulate an expert consensus on the screening and management of donors, including screening on the internet and in clinic, evaluation and selection during donation, establishment of the standard of donor management, the follow-up system and the professional support system, with a view to improving the quality of microbiota transplantation donors, reducing adverse events, and promoting the standardized clinical application of FMT.
China
;
Consensus
;
Fecal Microbiota Transplantation
;
Feces
;
Humans
;
Microbiota
7.Chinese experts consensus on clinical practice of the selection and establishment of fecal microbiota transplantation delivery routes.
Chinese Journal of Gastrointestinal Surgery 2020;23(Z1):14-20
Fecal microbiota transplantation (FMT) has gradually shown application prospects in the treatment of intestinal and extraintestinal diseases. In order to standardized FMT operation, based on the clinical experience of the Tenth People's Hospital Affiliated to Tongji University, combined with domestic and foreign literature, Parenteral and Enteral Nutrition Branch of Chinese Medical Association, Enhanced Recovery after Surgery Branch of China International Health Care Promotion Exchange Association, China Microecological Treatment Innovation Alliance, and Microecology Committee of Shanghai Preventive Medicine Association to formulated the" Chinese experts consensus on clinical practice of the selection and establishment of fecal microbiota transplantation delivery routes". It includes four parts: the selection of delivery route, the methodology of transplantation path establishment, the clinical application, and the monitoring of adverse events.
China
;
Consensus
;
Fecal Microbiota Transplantation
;
adverse effects
;
methods
;
standards
;
Humans
8.A preliminary study on the effects of fecal microbiota transplantation on the intestinal microecology of patients with severe pneumonia during the convalescence period.
Peiyan ZHONG ; Yimeng XU ; Shixian YE ; Feng YANG ; Lulu WU ; Guansheng SU ; Yuxin LIU ; Jiajie FENG ; Yu WANG ; Zhenyu WU ; Zeguang ZHENG
Chinese Critical Care Medicine 2023;35(4):352-357
OBJECTIVE:
To investigate the effects of fecal microbiota transplantation (FMT) on intestinal microbiome and organism in patients with severe pneumonia during the convalescence period.
METHODS:
A prospective non-randomized controlled study was conducted. From December 2021 to May 2022, patients with severe pneumonia during the convalescence period who received FMT (FMT group) and patients with severe pneumonia during the convalescence period who did not receive FMT (non-FMT group) admitted to the First Affiliated Hospital of Guangzhou Medical University were enrolled. The differences of clinical indicators, gastrointestinal function and fecal traits between the two groups were compared 1 day before and 10 days after enrollment. The 16S rDNA gene sequencing technology was used to analyze the changes of intestinal flora diversity and different species in patients with FMT before and after enrollment, and metabolic pathways were analyzed and predicted by Kyoto Encyclopedia of Genes and Genomes database (KEGG). Pearson correlation method was used to analyze the correlation between intestinal flora and clinical indicators in FMT group.
RESULTS:
The level of triacylglycerol (TG) in FMT group was significantly decreased at 10 days after enrollment compared with before enrollment [mmol/L: 0.94 (0.71, 1.40) vs. 1.47 (0.78, 1.86), P < 0.05]. The level of high-density lipoprotein cholesterol (HDL-C) in non-FMT group was significantly decreased at 10 days after enrollment compared with before enrollment (mmol/L: 0.68±0.27 vs. 0.80±0.31, P < 0.05). There were no significant differences in other clinical indexes, gastrointestinal function or fecal character scores between the two groups. Diversity analysis showed that the α diversity indexes of intestinal flora in FMT group at 10 days after enrollment were significantly higher than those in non-FMT group, and β diversity was also significantly different from that in non-FMT group. Differential species analysis showed that the relative abundance of Proteobacteria at the level of intestinal flora in FMT group at 10 days after enrollment was significantly lower than that in non-FMT group [8.554% (5.977%, 12.159%) vs. 19.285% (8.054%, 33.207%), P < 0.05], while the relative abundance of Fusobacteria was significantly higher than that in non-FMT group [6.801% (1.373%, 20.586%) vs. 0.003% (0%, 9.324%), P < 0.05], and the relative abundance of Butyricimonas, Fusobacterium and Bifidobacterium at the genus level of the intestinal flora was significantly higher than that in non-FMT group [Butyricimonas: 1.634% (0.813%, 2.387%) vs. 0% (0%, 0.061%), Fusobacterium: 6.801% (1.373%, 20.586%) vs. 0.002% (0%, 9.324%), Bifidobacterium: 0.037% (0%, 0.153%) vs. 0% (0%, 0%), all P < 0.05]. KEGG metabolic pathway analysis showed that the intestinal flora of FMT group was changed in bisphenol degradation, mineral absorption, phosphonate and phosphinate metabolism, cardiac muscle contraction, Parkinson disease and other metabolic pathways and diseases. Correlation analysis showed that Actinobacteria and prealbumin (PA) in intestinal flora of FMT group were significantly positively correlated (r = 0.53, P = 0.043), Bacteroidetes was positively correlated with blood urea nitrogen (BUN; r = 0.56, P = 0.029) and complement C3 (r = 0.57, P = 0.027), Firmicutes was positively correlated with BUN (r = 0.56, P = 0.029) and complement C3 (r = 0.57, P = 0.027), Fusobacteria was significantly positively correlated with immunoglobulin M (IgM; r = 0.71, P = 0.003), Proteobacteria was significantly positively correlated with procalcitonin (PCT; r = 0.63, P = 0.012) and complement C4 (r = 0.56, P = 0.030).
CONCLUSIONS
FMT can reduce TG level, reconstruct intestinal microecological structure, change body metabolism and function, and alleviate inflammatory response by reducing the relative abundance of harmful bacteria in patients with severe pneumonia during the convalescence period.
Humans
;
Fecal Microbiota Transplantation
;
Complement C3
;
Convalescence
;
Prospective Studies
;
Feces
10.Application of metagenomic and culturomic technologies in fecal microbiota transplantation: a review.
Yingjiao JU ; Xiaotong WANG ; Yinyu WANG ; Cuidan LI ; Liya YUE ; Fei CHEN
Chinese Journal of Biotechnology 2022;38(10):3594-3605
Fecal microbiota transplantation (FMT) refers to using the intestinal microorganisms present in the feces or processed feces from healthy people for treating various types of diseases, such as digestive and metabolic diseases. The rapid development of metagenomic and culturomic technologies in gut microbiome analysis provides powerful tools for the FMT research and its clinical applications. Metagenomics technologies comprehensively revealed the diversity and functions of gut microbiota under health and disease conditions, while culturomics technologies helped isolation and identification of "unculturable" bacteria in the human gut under conventional culture conditions. The combination of these two technologies not only enabled us better understand the FMT regularities of cause and effect in clinical practices, but also effectively promoted its applications. Considering the above advantages, this article summarized the applications of metagenomics and culturomics technologies in FMT and prospected its future development trend.
Humans
;
Fecal Microbiota Transplantation
;
Metagenomics
;
Feces/microbiology*
;
Gastrointestinal Microbiome
;
Bacteria