1.Advantages and limitations of transcutaneous electrical acupoint stimulation in the treatment of patients with severe gastrointestinal function injury in intensive care unit: a prospective randomized controlled trial.
Lele XU ; Yanjun CHEN ; Jian LU ; Yaou CHEN
Chinese Critical Care Medicine 2025;37(5):458-464
OBJECTIVE:
To evaluate the advantages and limitations of transcutaneous electrical acupoint stimulation (TEAS) in the treatment of patients with severe gastrointestinal function injury in intensive care unit (ICU) by analyzing dynamic changes of intestinal fatty acid binding protein (I-FABP), D-lactic acid and citrulline.
METHODS:
A prospective single-center randomized controlled trial was conducted. Patients with severe gastrointestinal function injury admitted to the ICU from February 2021 to January 2024 were enrolled [age > 18 years old, acute gastrointestinal injury (AGI) grade 2 to 3, stable hemodynamics]. Patients with different AGI grades were randomly assigned in a 1:1 ratio to the TEAS group and the control group using simple randomization. Both groups received conventional treatment and enteral nutrition (EN). In addition, the TEAS group underwent TEAS at the Neiguan and Zusanli points for 30 minutes per session, twice daily for 7 days. Baseline data, including age, gender, underlying diseases, and primary diagnoses, were recorded. Three intestinal biomarkers, such as I-FABP, D-lactic acid, and citrulline were measured before and after 7 days of treatment. EN tolerance indicators and 28 days survival status were documented. The differences in various indicators were compared between the two groups, subgroup analyses were conducted based on AGI grading, and interaction between AGI grade and TEAS were analyzed. The 28-day Kaplan-Meier survival curves were generated for both groups.
RESULTS:
Finally, 133 patients were included, with 68 in the TEAS group and 65 in the control group. Baseline characteristics were comparable between the two groups. A comparison of the dynamic changes in intestinal biomarkers revealed that the I-FABP level in both groups decreased after treatment compared to pre-treatment, with a more pronounced reduction in the TEAS group. The least square mean difference (LS Mean difference) for the corrected I-FABP level between the two groups during the observation period was -0.23 μg/L [95% confidence interval (95%CI) was -0.45 to -0.01], which was statistically significant (P = 0.041). Additionally, a significant interaction with AGI was observed (P = 0.004). Post-treatment, D-lactic acid level decreased in both groups compared to pre-treatment, with a more significant reduction in the TEAS group. The LS Mean difference for the corrected D-lactic acid level was -0.08 mmol/L (95%CI was -0.11 to -0.05), which was statistically significant (P < 0.001), and the interaction with AGI was also significant (P = 0.005). There was no significant change in citrulline levels between the two groups before and after treatment. The LS Mean difference for the corrected citrulline level was -0.17 μmol/L (95%CI was -1.87 to 1.53), which was not statistically significant (P = 0.845), and no significant interaction with AGI was observed (P = 0.913). Comparison of EN tolerance parameters between the two groups revealed that the TEAS group had a longer total EN time (hours: 72±31 vs. 60±28) and higher total EN calories (kJ: 11 469.23±7 237.34 vs. 6 638.76±5 098.37), as well as a higher 70% target caloric attainment rate (52.9% vs. 32.3%) compared to the control group (all P < 0.05). The incidence of abdominal distension after EN was lower in the TEAS group than that in the control group (23.5% vs. 43.1%, P < 0.05), while the incidence of diarrhea after EN was higher in the TEAS group (22.1% vs. 7.7%, P < 0.05). There were no significantly differences in AGI grade reduction rate, post-EN vomiting/gastric retention rate, incidence of feeding interruption, and 28-day survival rate between the two groups. Furthermore, there were no significantly interaction between these observation measures and AGI. Kaplan-Meier survival analysis showed that there was no significantly difference in 28-day cumulative survival rate between the TEAS group and the control group [Log-Rank test: P = 0.501, hazard ratio (HR) = 0.81, 95%CI was 0.43-1.51), and there was no significantly interaction with AGI (P = 0.702).
CONCLUSIONS
The advantage of TEAS in the treatment of ICU patients with severe gastrointestinal function injury lies in its ability to reverse intestinal cell necrosis and promote the reconstruction of intestinal barrier function. Additionally, gastrointestinal tolerance is significantly improved, and both the duration and total calories of EN are increased. However, the limitation of TEAS therapy is that it does not promote the recovery of intestinal cell absorption and synthesis function in the target patients. Moreover, it may lead to nutrient solution overload due to improved gastrointestinal tolerance. Furthermore, TEAS does not appear to improve 28-day cumulative survival rate in the target patients.
Humans
;
Prospective Studies
;
Intensive Care Units
;
Acupuncture Points
;
Fatty Acid-Binding Proteins/metabolism*
;
Transcutaneous Electric Nerve Stimulation
;
Male
;
Female
;
Citrulline/metabolism*
;
Lactic Acid/metabolism*
;
Gastrointestinal Diseases/therapy*
;
Middle Aged
;
Enteral Nutrition
;
Adult
2.Design and synthesis of novel saponin-triazole derivatives in the regulation of adipogenesis.
Yongsheng FANG ; Zhiyun ZHU ; Chun XIE ; Dazhen XIA ; Huimin ZHAO ; Zihui WANG ; Qian LU ; Caimei ZHANG ; Wenyong XIONG ; Xiaodong YANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):920-931
Saponins associated with Panax notoginseng (P. notoginseng) demonstrate significant therapeutic efficacy across multiple diseases. However, certain high-yield saponins face limited clinical applications due to their reduced pharmacological efficacy. This study synthesized and evaluated 36 saponin-1,2,3-triazole derivatives of ginsenosides Rg1/Rb1 and notoginsenoside R1 for anti-adipogenesis activity in vitro. The research revealed that the ginsenosides Rg1-1,2,3-triazole derivative a17 demonstrates superior adipogenesis inhibitory effects. Structure-activity relationships (SARs) analysis indicates that incorporating an amidyl-substituted 1,2,3-triazole into the saponin side chain via Click reaction enhances anti-adipogenesis activity. Additionally, several other derivatives exhibit general adipogenesis inhibition. Compound a17 demonstrated enhanced potency compared to the parent ginsenoside Rg1. Mechanistic investigations revealed that a17 exhibits dose-dependent inhibition of adipogenesis in vitro, accompanied by decreased expression of preadipocytes. Peroxisome proliferator-activated receptor γ (PPARγ), fatty acid synthase (FAS), and fatty acid binding protein 4 (FABP4) adipogenesis regulators. These findings establish the ginsenoside Rg1-1,2,3-triazole derivative a17 as a promising adipocyte differentiation inhibitor and potential therapeutic agent for obesity and associated metabolic disorders. This research provides a foundation for developing effective therapeutic approaches for various metabolic syndromes.
Adipogenesis/drug effects*
;
Triazoles/chemical synthesis*
;
Ginsenosides/chemical synthesis*
;
Saponins/chemical synthesis*
;
Animals
;
Mice
;
Structure-Activity Relationship
;
PPAR gamma/genetics*
;
3T3-L1 Cells
;
Adipocytes/metabolism*
;
Panax notoginseng/chemistry*
;
Drug Design
;
Molecular Structure
;
Humans
;
Cell Differentiation/drug effects*
;
Fatty Acid-Binding Proteins/genetics*
3.Spatially resolved expression landscape and gene-regulatory network of human gastric corpus epithelium.
Ji DONG ; Xinglong WU ; Xin ZHOU ; Yuan GAO ; Changliang WANG ; Wendong WANG ; Weiya HE ; Jingyun LI ; Wenjun DENG ; Jiayu LIAO ; Xiaotian WU ; Yongqu LU ; Antony K CHEN ; Lu WEN ; Wei FU ; Fuchou TANG
Protein & Cell 2023;14(6):433-447
Molecular knowledge of human gastric corpus epithelium remains incomplete. Here, by integrated analyses using single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) techniques, we uncovered the spatially resolved expression landscape and gene-regulatory network of human gastric corpus epithelium. Specifically, we identified a stem/progenitor cell population in the isthmus of human gastric corpus, where EGF and WNT signaling pathways were activated. Meanwhile, LGR4, but not LGR5, was responsible for the activation of WNT signaling pathway. Importantly, FABP5 and NME1 were identified and validated as crucial for both normal gastric stem/progenitor cells and gastric cancer cells. Finally, we explored the epigenetic regulation of critical genes for gastric corpus epithelium at chromatin state level, and identified several important cell-type-specific transcription factors. In summary, our work provides novel insights to systematically understand the cellular diversity and homeostasis of human gastric corpus epithelium in vivo.
Humans
;
Epigenesis, Genetic
;
Gastric Mucosa/metabolism*
;
Chromatin/metabolism*
;
Stem Cells
;
Epithelium/metabolism*
;
Fatty Acid-Binding Proteins/metabolism*
4.Ethanol promotes saturated fatty acid-induced hepatoxicity through endoplasmic reticulum (ER) stress response.
Hong-Wei YI ; Yu-Xiang MA ; Xiao-Ning WANG ; Cui-Fen WANG ; Jian LU ; Wei CAO ; Xu-Dong WU
Chinese Journal of Natural Medicines (English Ed.) 2015;13(4):250-256
Serum palmitic acid (PA), a type of saturated fatty acid, causes lipid accumulation and induces toxicity in hepatocytes. Ethanol (EtOH) is metabolized by the liver and induces hepatic injury and inflammation. Herein, we analyzed the effects of EtOH on PA-induced lipotoxicity in the liver. Our results indicated that EtOH aggravated PA-induced apoptosis and lipid accumulation in primary rat hepatocytes in dose-dependent manner. EtOH intensified PA-caused endoplasmic reticulum (ER) stress response in vitro and in vivo, and the expressions of CHOP, ATF4, and XBP-1 in nucleus were significantly increased. EtOH also increased PA-caused cleaved caspase-3 in cytoplasm. In wild type and CHOP(-/-) mice treated with EtOH and high fat diet (HFD), EtOH worsened the HFD-induced liver injury and dyslipidemia, while CHOP knockout blocked toxic effects of EtOH and PA. Our study suggested that targeting UPR-signaling pathways is a promising, novel approach to reducing EtOH and saturated fatty acid-induced metabolic complications.
Activating Transcription Factor 4
;
drug effects
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
Caspase 3
;
drug effects
;
Chemical and Drug Induced Liver Injury
;
metabolism
;
DNA-Binding Proteins
;
drug effects
;
metabolism
;
Diet, High-Fat
;
adverse effects
;
Dose-Response Relationship, Drug
;
Dyslipidemias
;
chemically induced
;
metabolism
;
Endoplasmic Reticulum Stress
;
drug effects
;
Ethanol
;
metabolism
;
toxicity
;
Fatty Liver
;
chemically induced
;
metabolism
;
Gene Knockout Techniques
;
Hepatocytes
;
drug effects
;
metabolism
;
Lipid Metabolism
;
drug effects
;
Liver
;
metabolism
;
Male
;
Mice
;
Palmitic Acid
;
toxicity
;
Rats
;
Rats, Sprague-Dawley
;
Regulatory Factor X Transcription Factors
;
Signal Transduction
;
drug effects
;
Transcription Factor CHOP
;
drug effects
;
genetics
;
metabolism
;
Transcription Factors
;
drug effects
;
metabolism
;
Unfolded Protein Response
;
drug effects
;
X-Box Binding Protein 1
5.Protective effect of heart-fatty acid binding protein on lipopolysaccharide-induced cardiomyocyte damage.
Yi LI ; Kangkai WANG ; Yongfang JIANG ; Jun CHEN
Journal of Central South University(Medical Sciences) 2015;40(5):457-463
OBJECTIVE:
To observe the protective effect of heart-fatty acid binding protein (H-FABP) on lipopolysaccharide (LPS)-induced cardiomyocyte damage.
METHODS:
The cardiomyocytes were isolated and cultured from 1-3 days old neonatal rats. The specific siRNA or plasmid of H-FABP were transfected into cells to alter H-FABP expression, which was evaluated by Western blot and quantitative-PCR. LPS-induced cardiomyocyte damage and inflammation were estimated by detecting the contents of lactate dehydrogenase(LDH), TNF-α, and IL-1β as well as cell viability.
RESULTS:
LPS treatment induced inflammation and cell damage indicated by a decrease in cell viability and an increase in LDH, TNF-α and IL-1β in the medium. When H-FABP was downregulated by siRNA transfection, the LPS-induced inflammation and cell damage were augmented. In contrast, when H-FABP was overexpressed by pcDNA3.1-H-FABP transfection, the LPS-induced inflammation and cell damage were suppressed.
CONCLUSION
H-FABP protects cardiomyocytes from LPS-induced inflammation and cell injury.
Animals
;
Animals, Newborn
;
Cell Line
;
Cell Survival
;
Down-Regulation
;
Fatty Acid Binding Protein 3
;
Fatty Acid-Binding Proteins
;
metabolism
;
Inflammation
;
metabolism
;
Interleukin-1beta
;
metabolism
;
L-Lactate Dehydrogenase
;
metabolism
;
Lipopolysaccharides
;
adverse effects
;
Myocytes, Cardiac
;
cytology
;
drug effects
;
RNA, Small Interfering
;
genetics
;
Rats
;
Transfection
;
Tumor Necrosis Factor-alpha
;
metabolism
6.Protective effect of silibinin on islet β cells in C57BL/6J mice fed a highfat diet.
Ke CHEN ; Jun XU ; Honghui HE ; Liling ZHAO ; Jing XIONG ; Zhaohui MO
Journal of Central South University(Medical Sciences) 2015;40(2):165-170
OBJECTIVE:
To explore the eff ect of silibinin on β cells in C57BL/6J mice fed a high-fat diet and the possible mechanisms.
METHODS:
A total of 18 male C57BL/6J mice at 3 weeks old were divided into a normal chow group (n=6), a high-fat diet group (n=6) and a high-fat diet plus silibinin group (n=6). Aft er intervention for 10 weeks, fasting blood glucose (FBG), fasting insulin (FINS), triglycerides (TG), alanine aminotransferase (ALT), creatinine (Cr) and blood urea nitrogen (BUN), lipid metabolism, antioxidant enzyme activities and apoptosis were evaluated. Pancreatic tissues were isolated to examine insulin-induced gene-1 (Insig-1), sterol regulatory element binding protein-1c (SREBP-1c) and fatty acid synthetase (FAS) mRNA and protein expression.
RESULTS:
Compared with the high-fat diet group, the function of insulin secretion was improved, and the level of blood glucose was decreased in the high-fat diet plus silibinin group (P<0.05). The levels of lipid content and oxidative stress and the rates of β cell apoptosis were lower in high-fat diet plus silibinin group than those in the high-fat diet group (both P<0.05). Simultaneously, the silibinin could promote the expression of Insig-1 and depress the expression of SREBP-1c and FAS (all P<0.05). Moreover, there was no significant difference in the levels of serum ALT, Cr and BUN among the 3 groups (all P>0.05).
CONCLUSION
Silibinin can protect β cells of mice fed a high-fat diet, and this effect might be related to, at least partially, increase in its antioxidative ability through regulation of insig-1/SREBP-1c pathway. Moreover, silibinin is safe for long-term treatment.
Alanine Transaminase
;
blood
;
Animals
;
Apoptosis
;
Blood Glucose
;
analysis
;
Blood Urea Nitrogen
;
Creatinine
;
blood
;
Diet, High-Fat
;
Fatty Acid Synthases
;
metabolism
;
Insulin
;
blood
;
Insulin-Secreting Cells
;
cytology
;
drug effects
;
Lipid Metabolism
;
Lipids
;
Male
;
Membrane Proteins
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
Oxidative Stress
;
Silybin
;
Silymarin
;
pharmacology
;
Sterol Regulatory Element Binding Protein 1
;
metabolism
;
Triglycerides
;
blood
7.Binding of Shewanella FadR to the fabA fatty acid biosynthetic gene: implications for contraction of the fad regulon.
Huimin ZHANG ; Beiwen ZHENG ; Rongsui GAO ; Youjun FENG
Protein & Cell 2015;6(9):667-679
The Escherichia coli fadR protein product, a paradigm/prototypical FadR regulator, positively regulates fabA and fabB, the two critical genes for unsaturated fatty acid (UFA) biosynthesis. However the scenario in the other Ɣ-proteobacteria, such as Shewanella with the marine origin, is unusual in that Rodionov and coworkers predicted that only fabA (not fabB) has a binding site for FadR protein. It raised the possibility of fad regulon contraction. Here we report that this is the case. Sequence alignment of the FadR homologs revealed that the N-terminal DNA-binding domain exhibited remarkable similarity, whereas the ligand-accepting motif at C-terminus is relatively-less conserved. The FadR homologue of S. oneidensis (referred to FadR_she) was over-expressed and purified to homogeneity. Integrative evidence obtained by FPLC (fast protein liquid chromatography) and chemical cross-linking analyses elucidated that FadR_she protein can dimerize in solution, whose identity was determined by MALDI-TOF-MS. In vitro data from electrophoretic mobility shift assays suggested that FadR_she is almost functionally-exchangeable/equivalent to E. coli FadR (FadR_ec) in the ability of binding the E. coli fabA (and fabB) promoters. In an agreement with that of E. coli fabA, S. oneidensis fabA promoter bound both FadR_she and FadR_ec, and was disassociated specifically with the FadR regulatory protein upon the addition of long-chain acyl-CoA thioesters. To monitor in vivo effect exerted by FadR on Shewanella fabA expression, the native promoter of S. oneidensis fabA was fused to a LacZ reporter gene to engineer a chromosome fabA-lacZ transcriptional fusion in E. coli. As anticipated, the removal of fadR gene gave about 2-fold decrement of Shewanella fabA expression by β-gal activity, which is almost identical to the inhibitory level by the addition of oleate. Therefore, we concluded that fabA is contracted to be the only one member of fad regulon in the context of fatty acid synthesis in the marine bacteria Shewanella genus.
Amino Acid Sequence
;
Bacterial Proteins
;
chemistry
;
metabolism
;
Base Sequence
;
Binding Sites
;
DNA, Bacterial
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Fatty Acid Synthase, Type II
;
genetics
;
metabolism
;
Fatty Acids
;
biosynthesis
;
Gene Expression Regulation, Bacterial
;
drug effects
;
Molecular Sequence Data
;
Oleic Acid
;
pharmacology
;
Protein Binding
;
drug effects
;
Regulon
;
genetics
;
Repressor Proteins
;
chemistry
;
metabolism
;
Shewanella
;
genetics
;
metabolism
8.Increased expression of fatty acid binding protein 4 in lungs of preterm rats after hyperoxic lung injury.
Wei WANG ; Zhi-Rui CUI ; Li-Xia CAI ; Xiao-Ping LUO
Chinese Journal of Contemporary Pediatrics 2014;16(11):1149-1153
OBJECTIVETo study the expression of fatty acid binding protein 4 (FABP4) in lungs and bronchoalveolar lavage fluid (BALF) of preterm rats exposed to 60% O2 and to elucidate the relationship between the changes of FABP4 expression and the pathogenesis of bronchopulmonary dysplasia (BPD).
METHODSHyperoxic lung injury was induced by exposing to 60% O2 in Spraque-Dawley rats within 6 hours after birth. Rats exposed to air were used as the control group. The lungs from groups aged postnatal days 3, 7 and 14 were removed and dissected from the main bronchi for analysis. Eight rats of each group were used to assess expression of FABP4 in lungs by immunohistochemistry and ELISA. Lung FABP4 mRNA levels were measured by semi-quantitative reverse transcription polymerase chain reaction. The levels of FABP4 in BALF were measured using ELISA.
RESULTSFABP4 immunoreactivity was detected in the majority of alveolar macrophages, bronchial epithelial cells and endothelial cells. FABP4 protein levels in lung tissues in the hyperoxic exposure group increased significantly compared with the control group on days 3, 7 and 14 after birth (P<0.05), and FABP4 mRNA levels in lung tissues also increased significantly in the hyperoxic exposure group compared with the control group on days 7 and 14 after birth (P<0.05). The hyperoxic exposure group demonstrated increased FABP4 levels in BALF compared with the control group on days 7 and 14 after birth (P<0.05).
CONCLUSIONSFABP4 levels increase in preterm rat lungs after hyperoxic lung injury, which may contribute to the pathogenesis of BPD.
Animals ; Bronchopulmonary Dysplasia ; etiology ; Fatty Acid-Binding Proteins ; analysis ; genetics ; Female ; Hyperoxia ; metabolism ; Lung ; chemistry ; Lung Injury ; metabolism ; Male ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley ; Vascular Endothelial Growth Factor A ; physiology
9.A new glimpse of FadR-DNA crosstalk revealed by deep dissection of the E. coli FadR regulatory protein.
Yongchang ZHANG ; Rongsui GAO ; Huiyan YE ; Qingjing WANG ; Youjun FENG
Protein & Cell 2014;5(12):928-939
Escherichia coli (E. coli) FadR regulator plays dual roles in fatty acid metabolism, which not only represses the fatty acid degradation (fad) system, but also activates the unsaturated fatty acid synthesis pathway. Earlier structural and biochemical studies of FadR protein have provided insights into interplay between FadR protein with its DNA target and/or ligand, while the missing knowledge gap (esp. residues with indirect roles in DNA binding) remains unclear. Here we report this case through deep mapping of old E. coli fadR mutants accumulated. Molecular dissection of E. coli K113 strain, a fadR mutant that can grow on decanoic acid (C10) as sole carbon sources unexpectedly revealed a single point mutation of T178G in fadR locus (W60G in FadRk113). We also observed that a single genetically-recessive mutation of W60G in FadR regulatory protein can lead to loss of its DNA-binding activity, and thereby impair all the regulatory roles in fatty acid metabolisms. Structural analyses of FadR protein indicated that the hydrophobic interaction amongst the three amino acids (W60, F74 and W75) is critical for its DNA-binding ability by maintaining the configuration of its neighboring two β-sheets. Further site-directed mutagenesis analyses demonstrated that the FadR mutants (F74G and/or W75G) do not exhibit the detected DNA-binding activity, validating above structural reasoning.
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase
;
genetics
;
metabolism
;
Amino Acid Sequence
;
Bacterial Proteins
;
chemistry
;
genetics
;
metabolism
;
DNA, Bacterial
;
chemistry
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Escherichia coli Proteins
;
genetics
;
metabolism
;
Fatty Acid Synthase, Type II
;
genetics
;
metabolism
;
Fatty Acids
;
metabolism
;
Gene Expression Regulation, Bacterial
;
Hydro-Lyases
;
genetics
;
metabolism
;
Hydrophobic and Hydrophilic Interactions
;
Lipid Metabolism
;
Models, Molecular
;
Molecular Sequence Data
;
Mutation
;
Protein Binding
;
Protein Structure, Secondary
;
Repressor Proteins
;
chemistry
;
genetics
;
metabolism
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Signal Transduction
10.Protective effect of low-dose ketamine against intestinal ischemia-reperfusion injury following carbon dioxide pneumoperitoneum in rats.
Wei WANG ; Fuhong TIAN ; Liushi YAN
Journal of Southern Medical University 2013;33(11):1685-1688
OBJECTIVETo investigate the protective effect of low-dose ketamine against intestinal ischemia reperfusion injury following pneumoperitoneum with carbon dioxide in rats.
METHODSThirty healthy male adult SD rats (body weight 280-320 g) were randomized into sham-operated group, model group and ketamine group and subjected to pneumoperitoneum for 120 min with carbon dioxide (not in sham-operated group). The rats in ketamine group received an intraperitoneal injection of 10 mg/kg ketamine 10 min before pneumoperitoneum, and those in the other two groups received saline injection. Fifteen minutes after pneumoperitoneum or sham operation, the small intestines were sampled to detect the content of malondialdehyde (MDA) and fore pathological testing. ELISA was used to detect the serum levels of I-FABP, TNF-α IL-6 and IL-8.
RESULTSPneumoperitoneum caused a significant increase in intestinal MDA content (P<0.05), which was lowered by ketamine pretreatment (P<0.05). Serum I-FABP, TNF-α, IL-6 and IL-8 levels all significantly increased following pneumoperitoneum (P<0.05) and were obviously lowered by ketamine pretreatment (P<0.05). Pneumoperitoneum also caused obvious pathologies in intestinal mucosa, which were ameliorated by ketamine pretreatment.
CONCLUSIONLow-dose ketamine preconditioning can reduce the inflammatory reaction and lessen oxidative damage in the intestinal mucosa following pneumoperitoneum in rats.
Animals ; Carbon Dioxide ; Dose-Response Relationship, Drug ; Fatty Acid-Binding Proteins ; blood ; Interleukin-6 ; blood ; Interleukin-8 ; blood ; Intestine, Small ; blood supply ; metabolism ; pathology ; Ketamine ; administration & dosage ; therapeutic use ; Male ; Malondialdehyde ; metabolism ; Pneumoperitoneum ; chemically induced ; complications ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Reperfusion Injury ; blood ; etiology ; metabolism ; pathology ; prevention & control ; Tumor Necrosis Factor-alpha ; blood

Result Analysis
Print
Save
E-mail