1.Fatty Acid Composition of Tissue Cultured Breast Carcinoma and the Effect of Stearoyl-CoA Desaturase 1 Inhibition.
Fatemeh MOHAMMADZADEH ; Gholamali MOSAYEBI ; Vahid MONTAZERI ; Maryam DARABI ; Shabnam FAYEZI ; Maghsod SHAAKER ; Mohammad RAHMATI ; Behzad BARADARAN ; Amir MEHDIZADEH ; Masoud DARABI
Journal of Breast Cancer 2014;17(2):136-142
PURPOSE: Stearoyl-CoA desaturase 1 (SCD1) is a novel therapeutic target in various malignancies, including breast cancer. The present study was designed to investigate the effect of the pharmacologic inhibition of SCD1 on fatty acid composition in tissue explant cultures of human breast cancer and to compare these effects with those in adjacent nonneoplastic breast tissue. METHODS: Paired samples of tumor and adjacent noncancerous tissue were isolated from 12 patients with infiltrating ductal breast cancer. Samples were explant cultured in vitro, exposed to the highly selective SCD1 inhibitor CAY10566, and examined for fatty acid composition by gas liquid chromatography. The cytotoxic and antigrowth effects were evaluated by quantification of lactate dehydrogenase release and by sulforhodamine B (SRB) measurement, respectively. RESULTS: Breast cancer tissue samples were found to have higher levels of monounsaturated fatty acids (MUFA) (p<0.001) and arachidonic acid (20:4n-6, p<0.001) and a lower level of linoleic acid (18:2n-6, p=0.02) than the normal-appearing breast tissues. While exhibiting no evident cytotoxicity, treatment with the SCD1 inhibitor, CAY10566 (0.1-1 microM), for 48 hours significantly increased 18:2n-6 levels in both the tumor and adjacent normal-appearing tissue (approximately 1.2 fold, p<0.05). However, the breast cancer tissue samples showed significant increases in the levels of MUFA and 20:4n-6 compared to the normal-appearing breast tissues (p<0.05). The SRB growth assay revealed a higher rate of inhibition with the SCD1 inhibitor in breast cancer tissues than in normal-appearing tissues (p<0.01, 41% vs. 29%). The SCD1 inhibitor also elevated saturated fatty acid (1.46-fold, p=0.001) levels only in the tumor tissue explant. CONCLUSION: The fatty acid composition and response to SCD1 inhibition differed between the explant cultures from breast cancer and the adjacent normal-appearing tissue. Altered fatty acid composition induced by SCD1 inhibition may also, in addition to Delta9 desaturation, modulate other reactions in de novo fatty acid synthesis and lipogenesis, and subsequently affect the overall survival and progression of breast cancer.
Arachidonic Acid
;
Breast
;
Breast Neoplasms*
;
Chromatography, Liquid
;
Fatty Acid Desaturases
;
Fatty Acids, Monounsaturated
;
Humans
;
L-Lactate Dehydrogenase
;
Linoleic Acid
;
Lipogenesis
;
Stearoyl-CoA Desaturase*
;
Tissue Culture Techniques
2.Research Progress of Fatty Acid Desaturase 2 Gene in Glycolipid Metabolism.
Guo-Jie WANG ; Ye TIAN ; Hui-Ying ZHANG
Acta Academiae Medicinae Sinicae 2022;44(1):158-163
The fatty acid desaturase 2 (FADS2) gene encodes delta-6 desaturase (D6D) and is a member of the fatty acid desaturase gene family.D6D is the key enzyme catalyzing the transformation of linoleic acid and α-linolenic acid to long-chain polyunsaturated fatty acid (LC-PUFA).LC-PUFA play a crucial role in regulating the glycolipid metabolism of living organisms.In recent years,the activity of D6D and the single nucleotide polymorphism (SNP) of FADS2 gene have become a hot topic in the research on glycolipid metabolism.This article reviews the role of FADS2 gene in glycolipid metabolism.
Fatty Acid Desaturases/metabolism*
;
Glycolipids/metabolism*
;
Humans
;
Polymorphism, Single Nucleotide
3.Construction of transgenic mice with Δ15 Des enzyme activity by using a PiggyBac transposon.
Ying WANG ; Shisai YANG ; Xuan ZHAO ; Ya LI ; Lulu LÜ ; Guiming ZHU
Chinese Journal of Biotechnology 2022;38(1):196-206
Essential fatty acids are those that could not be synthesized by the body itself but crucial for health and life. Studies have shown that ω-3 fatty acids may facilitate human physiological functions. Mammals lack ω-3 desaturase gene, and the Δ15 fatty acid desaturase (Δ15 Des) from Caenorhabditis elegans can transform the ω-6 polyunsaturated fatty acids (PUFAs) into ω-3 PUFAs. Transgenic mice expressing Δ15 Des enzyme activity was constructed by using a PiggyBac transposon (PB). Homozygous transgenic mice with stable inheritance was bred in a short time, with a positive rate of 35.1% achieved. The mice were fed with 6% ω-6 PUFAs and the changes of fatty acids in mice were detected by gas chromatography (GC). The expression level of Δ15 Des in mice was detected by quantitative PCR (qPCR) and Western blotting (WB). qPCR and GC analysis revealed that the percentage of positive mice harboring the active gene was 61.53%. Compared with traditional methods, the transformation efficiency and activity of Δ15 Des were significantly improved, and homozygotes showed higher activity than that of heterozygotes. This further verified the efficient transduction efficiency of the PiggyBac transposon system.
Animals
;
Caenorhabditis elegans/genetics*
;
Fatty Acid Desaturases/genetics*
;
Fatty Acids
;
Fatty Acids, Omega-3
;
Mice
;
Mice, Transgenic
4.Progress on molecular biology of delta6-fatty acid desaturases.
Qi ZHANG ; Ming-Chun LI ; Hong-Yan SUN ; Ying SUN ; Hai-Ting MA ; Lai-Jun XING
Chinese Journal of Biotechnology 2004;20(3):319-324
Polyunsaturated fatty acids (PUFAs) including gamma-linolenic acid are valuable products because of their involvement in several aspects of human health care. GLA has been claimed to play a crucial role in development and prevention of some skin diseases, diabetes, reproductive disorder and others. At present, market demand for most gamma-linolenic acid is growing continually and current sources are inadequate for satisfying this demand due to the significant problems of low productivity, complex and expensive downstream process and unstable quality. Therefore, seeking for alternative sources are demanding. delta6-fatty acid desaturase is the rate-limiting enzyme for the biosynthesis of PUFAs, which catalyses the conversion of linoleic acid and alpha-linolenic acid to gamma-linolenic acid and stearidonic acid respectively. Unfortunately, the structure information on membrane desaturases is scarce because of the technical limitations in obtaining quantities of purified protein and the intrinsic difficulties in obtaining crystals from membrane proteins. With the isolation of the genes coding for delta6-fatty acid desaturase from various organisms, its characteristics will be elucidated gradually. Here we concisely reviewed the recent progress on studies of molecular biology including the cloning of delta6-fatty acid desaturase gene, structure and function, phylogeny and prospects of gene engineering application.
Cloning, Molecular
;
Fatty Acid Desaturases
;
genetics
;
metabolism
;
Fatty Acids, Unsaturated
;
biosynthesis
;
Genetic Engineering
;
methods
;
Phylogeny
;
gamma-Linolenic Acid
;
biosynthesis
5.The synthesis and function analysis of omega-3 fatty acid desaturase gene from Caenorhabditis briggssae.
Gui-Ming ZHU ; Hong CHEN ; Yan-Rong ZHOU ; Jian-Shen LU ; Xiao-Jie WU ; Hong-Xing CHEN ; Ji-Xian DENG
Chinese Journal of Biotechnology 2006;22(5):763-771
Omega-3 polyunsaturated fatty acids (PUFAs) have been broadly investigated and shown to exert many preventive and therapeutic actions besides their important role in maintenances human health and normal development. In mammals, the level of omega-3 PUFAs is relatively too low compared with omega-6 PUFAs, which metabolically and functionally distinct from omega-3 PUFAs and often have important opposing physiological functions. Either the inefficiency of omega-3 PUFAs or the excess of omega-6 PUFAs will cause many healthy problems. So methods have been sought to increase the amount of omega-3 PUFAs and to improve the omega-6/omega-3 ratio in body. In this study, the sFat-1 gene, which putatively encodes a omega-3 fatty acid desaturase, was chemically synthesized according to the sequence from Caenorhabditis briggssae (with codon usage modified), and constructed into a mammal expression vector pcDNA3. 1-sFat1-EGFP. This vector was introduced into CHO cells by lipid-mediated transfection, and it's expression quickly and effectively elevated the cellular omega-3 PUFAs (from 18-carbon to 22-carbon) contents and dramatically improved the ratio of omega-6/omega-3 PUFAs. Cellular lipids extracts from stably selected cells were analyzed with GC-MS and the results showed that amount of total omega-6 PUFAs dropped from 48.97% (in GFP cells)to 35.29% (in sFat-1 cells), whereas the amount of total omega-3 PUFAs increased from 7.86% to 24.02%, respectively. The omega-6/omega-3 ratio also dropped from 6.23 to 1.47. These data demonstrates the Caenorhabditis briggssae omega-3 Fatty Acid Desaturase gene, sFat-1, was synthesized successfully and can produce omega-3 PUFAs by using the corresponding omega-6 PUFAs as substrates, which shows its potential for use in the production of omega-3 PUFAs in transgenic animals.
Animals
;
CHO Cells
;
Caenorhabditis
;
enzymology
;
genetics
;
Cricetinae
;
Cricetulus
;
Fatty Acid Desaturases
;
genetics
;
physiology
;
Fatty Acids
;
analysis
;
Plasmids
;
Polymerase Chain Reaction
6.Cloning and expression in Saccharomyces cerevisiae of delta5-fatty acid desaturase gene from Phaeodactylum tricornutum.
Zhe YANG ; Dongsheng WEI ; Laijun XING ; Mingchun LI
Chinese Journal of Biotechnology 2009;25(2):195-199
Delta5-fatty acid desaturase is the key enzyme in synthesis of arachidonic acid. Two specific fragment was cloned from genomic DNA and total cDNA of Phaeodactylum tricornutum through PCR with primer designed according to the reported sequences, respectively 1520 bp and 1410 bp. Comparison of the genomic and cDNA sequences revealed that the delta5-fatty Acid Desaturase gene from genomic DNA had an 110 bp intron. The 1.4 kb was subcloned into the yeast-E. coli shuttle vector pYES2.0, then an expression recombinant plasmid pYPTD5 containerizing target gene was constructed. The plasmid pYPTD5 was transformed into defective mutant INCSc 1 of Saccharomyces cerevisiae for expression by electrotransformation method. Dihomo-gamma-linolenic acid was provided as an exogenous substrate to the yeast cultures, with galactose as inducer. By GC detecting, the recombinant S. cerecisiae had arachidonic acid. The results indicated that high level expression of delta5-fatty acid desaturase, and the substrate conversion reached 45.9%.
Cloning, Molecular
;
Diatoms
;
enzymology
;
genetics
;
Fatty Acid Desaturases
;
biosynthesis
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Saccharomyces cerevisiae
;
genetics
;
metabolism
7.Epididymal sperm protein P34H and male reproduction.
Xin-Yi XIA ; Yu-Feng HUANG ; Xiao-Feng XU
National Journal of Andrology 2002;8(5):356-362
During epididymal transit, mammalian spermatozoa acquire new surface proteins that are necessary for gamete interaction. P34H, a member of the short-chain dehydrogenase/reductase(SDR) superfamily, is acquired on the acrosomal cap of human spermatozoon during its maturation arising within epididymis. P34H has been shown to be involved in sperm-zona pellucida interaction. Research revealed that the occurrence of low concentration of sperm protein P34H were significant amongst the idiopathic infertile male population and P34H protein could also be considered as a marker of epididymal sperm maturation in human. Therefore the level of sperm protein P34H is proposed to be a auxiliary diagnostic tool for male infertility. This paper reviews the molecular properties and regulation of the expression of P34H and its association with male reproduction.
Acyl-CoA Dehydrogenase
;
Fatty Acid Desaturases
;
chemistry
;
Gene Expression
;
Humans
;
Male
;
Proteins
;
genetics
;
physiology
;
Sperm Maturation
;
physiology
;
Sugar Alcohol Dehydrogenases
8.Deficiency or activation of peroxisome proliferator-activated receptor α reduces the tissue concentrations of endogenously synthesized docosahexaenoic acid in C57BL/6J mice
Wen Ting HSIAO ; Hui Min SU ; Kuan Pin SU ; Szu Han CHEN ; Hai Ping WU ; Yi Ling YOU ; Ru Huei FU ; Pei Min CHAO
Nutrition Research and Practice 2019;13(4):286-294
BACKGROUND/OBJECTIVES: Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LCPUFA), is acquired by dietary intake or the in vivo conversion of α-linolenic acid. Many enzymes participating in LCPUFA synthesis are regulated by peroxisome proliferator-activated receptor alpha (PPARα). Therefore, it was hypothesized that the tissue accretion of endogenously synthesized DHA could be modified by PPARα. MATERIALS/METHODS: The tissue DHA concentrations and mRNA levels of genes participating in DHA biosynthesis were compared among PPARα homozygous (KO), heterozygous (HZ), and wild type (WT) mice (Exp I), and between WT mice treated with clofibrate (PPARα agonist) or those not treated (Exp II). In ExpII, the expression levels of the proteins associated with DHA function in the brain cortex and retina were also measured. An n3-PUFA depleted/replenished regimen was applied to mitigate the confounding effects of maternal DHA. RESULTS: PPARα ablation reduced the hepatic Acox, Fads1, and Fads2 mRNA levels, as well as the DHA concentration in the liver, but not in the brain cortex. In contrast, PPARα activation increased hepatic Acox, Fads1, Fads2 and Elovl5 mRNA levels, but reduced the DHA concentrations in the liver, retina, and phospholipid of brain cortex, and decreased mRNA and protein levels of the brain-derived neurotrophic factor in brain cortex. CONCLUSIONS: LCPUFA enzyme expression was altered by PPARα. Either PPARα deficiency or activation-decreased tissue DHA concentration is a stimulus for further studies to determine the functional significance.
Animals
;
Brain
;
Brain-Derived Neurotrophic Factor
;
Clofibrate
;
Docosahexaenoic Acids
;
Fatty Acid Desaturases
;
Liver
;
Mice
;
Peroxisomes
;
PPAR alpha
;
Retina
;
RNA, Messenger
9.Expression of yeast acyl-delta9 desaturase for fatty acid biosynthesis in tobacco.
Jin'ai XUE ; Xue MAO ; Yongmei WU ; Zhirong YANG ; Xiaoyun JIA ; Li ZHANG ; Jiping WANG ; Aiqin YUE ; Xiping SUN ; Runzhi LI
Chinese Journal of Biotechnology 2013;29(5):630-645
Palmitoleic acid (16:1delta9), an unusual monounsaturated fatty acid, is highly valued for human nutrition, medication and industry. Plant oils containing large amounts of palmitoleic acid are the ideal resource for biodiesel production. To increase accumulation of palmitoleic acid in plant tissues, we used a yeast (Saccharomyees cerevisiae) acyl-CoA-delta9 desaturase (Scdelta9D) for cytosol- and plastid-targeting expression in tobacco (Nicotiana tabacum L.). By doing this, we also studied the effects of the subcellular-targeted expression of this enzyme on lipid synthesis and metabolism in plant system. Compared to the wild type and vector control plants, the contents of monounsaturated palmitoleic (16:1delta9) and cis-vaccenic (18:1delta11) were significantly enhanced in the Scdelta9D-transgenic leaves whereas the levels of saturated palmitic acid (16:0) and polyunsaturated linoleic (18:2) and linolenic (18:3) acids were reduced in the transgenics. Notably, the contents of 16:1delta9 and 18:1delta11 in the Scdelta9D plastidal-expressed leaves were 2.7 and 1.9 folds of that in the cytosolic-expressed tissues. Statistical analysis appeared a negative correlation coefficient between 16:0 and 16:1delta9 levels. Our data indicate that yeast cytosolic acyl-CoA-delta9 desaturase can convert palmitic (16:0) into palmitoleic acid (16:1delta9) in high plant cells. Moreover, this effect of the enzyme is stronger with the plastid-targeted expression than the cytosol-target expression. The present study developed a new strategy for high accumulation of omega-7 fatty acids (16:1delta9 andl8:1delta11) in plant tissues by protein engineering of acyl-CoA-delta9 desaturase. The findings would particularly benefit the metabolic assembly of the lipid biosynthesis pathway in the large-biomass vegetative organs such as tobacco leaves for the production of high-quality biodiesel.
Fatty Acid Desaturases
;
genetics
;
metabolism
;
Fatty Acids, Monounsaturated
;
metabolism
;
Plants, Genetically Modified
;
Recombinant Proteins
;
genetics
;
metabolism
;
Saccharomyces cerevisiae
;
enzymology
;
Saccharomyces cerevisiae Proteins
;
genetics
;
metabolism
;
Tobacco
;
genetics
;
metabolism
10.Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells.
Guiming ZHU ; Abdulmomen Ali Mohammed SALEH ; Said Ahmed BAHWAL ; Kunfu WANG ; Mingfu WANG ; Didi WANG ; Tangdong GE ; Jie SUN
Chinese Journal of Biotechnology 2014;30(9):1464-1472
Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.
Acetyltransferases
;
genetics
;
metabolism
;
Arachidonic Acid
;
biosynthesis
;
Docosahexaenoic Acids
;
biosynthesis
;
Eicosapentaenoic Acid
;
biosynthesis
;
Fatty Acid Desaturases
;
genetics
;
metabolism
;
Fatty Acid Synthases
;
genetics
;
metabolism
;
Fatty Acids, Unsaturated
;
biosynthesis
;
Genetic Vectors
;
HEK293 Cells
;
Humans
;
Transfection