1.11'-Deoxyverticillin A induces caspase-dependent cell apoptosis in PC3M cells.
Yingdi SHI ; Yingqiu ZHANG ; Yangxiao NI ; Guoli SHI ; Huaiyi YANG
Chinese Journal of Biotechnology 2012;28(1):96-103
Recent years, the incidence and mortality of prostate cancer have increased dramatically in China. At earlier stages, most diagnosed prostate cancers are responsive to androgen depletion treatment, yet, nearly all patients will eventually progress to metastatic androgen-independent prostate cancer (AIPC), which still has no effective therapeutic method or drug to deal with. 11'-Deoxyverticillin A (C42) belongs to the family of epipolythiodioxopiperazines (ETPs), an interesting class of fungal toxins that inhibit farnesyl transferase. Compounds holding such a property have been explored as putative anticancer agents. In this study, using PC3M cells, an AIPC cell line, we investigated the effect of the compound on apoptosis and explored the underlying mechanism. It revealed that C42 markedly enhanced the activity of caspase-3/7 and increased the accumulation of the cleaved PARP, all of which are the markers of apoptosis. It also revealed that C42 either decreased cell viability or inhibited the growth of PC3M cells. Moreover, we observed that the loss of cell viability and cell growth inhibition induced by C42 were both time- and dosage dependent. Taken together, we indicated that C42 can induce caspase-dependent apoptosis in AIPC cells, and the results presented here will broaden our knowledge about the molecular mechanisms by which C42 exerts its anticancer activity, and future work in this direction may provide valuable information in the development of these compounds into effective cancer therapeutic strategies against androgen-independent prostate cancer.
Apoptosis
;
drug effects
;
Caspase 3
;
metabolism
;
Caspase 7
;
metabolism
;
Cell Line, Tumor
;
Disulfides
;
pharmacology
;
Farnesyltranstransferase
;
antagonists & inhibitors
;
Humans
;
Male
;
Mycotoxins
;
pharmacology
;
Piperazines
;
pharmacology
;
Prostatic Neoplasms
;
pathology
2.7-imidazolylalkanamido-1-carboxylalkylbenzo-diazepine, a novel series of farnesyltransferase inhibitors.
Sheng-biao WAN ; Feng-ming CHU ; Zong-ru GUO
Acta Pharmaceutica Sinica 2002;37(7):516-521
AIMDesign, synthesis and evaluation of a series of 7-imidazolylalkanamido-1-carboxylalkylbenzodiazepine farnesyltransferase (FTase) inhibitors.
METHODS AND RESULTSCoupling of imidazolylalkylcarboxylic acids and 1-substituted 7-aminobenzodiazepines (5a-5c) yielded 10 new compounds (6-12, 16-18) which were biologically tested against FTase using scintillation proximity assay method.
CONCLUSIONFive target compounds were found to be potential farnesyltransferase inhibitors.
Alkyl and Aryl Transferases ; antagonists & inhibitors ; drug effects ; Benzodiazepines ; chemical synthesis ; chemistry ; pharmacology ; Farnesyltranstransferase ; Imidazoles ; chemical synthesis ; chemistry ; pharmacology ; Inhibitory Concentration 50 ; Molecular Conformation ; Molecular Structure ; Structure-Activity Relationship
3.Effect of Farnesyltransferase Inhibitor R115777 on Mitochondria of Plasmodium falciparum.
Young Ran HA ; Bae Geun HWANG ; Yeonchul HONG ; Hye Won YANG ; Sang Joon LEE
The Korean Journal of Parasitology 2015;53(4):421-430
The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (DeltaPsim) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.
Antimalarials/*pharmacology
;
Enzyme Inhibitors/*pharmacology
;
Farnesyltranstransferase/*antagonists & inhibitors/genetics/*metabolism
;
Humans
;
Malaria, Falciparum/drug therapy/*parasitology
;
Mitochondria/*drug effects/metabolism
;
Plasmodium falciparum/drug effects/*enzymology/genetics
;
Protozoan Proteins/*antagonists & inhibitors/genetics/metabolism
;
Quinolones/*pharmacology
4.The design of muti-target antitumor drugs affecting on FTase and Raf-1 kinase.
Juan ZHAO ; Yi-jing ZHU ; Lu ZENG ; Qian WANG ; Feng-chao JIANG
Acta Pharmaceutica Sinica 2011;46(2):170-178
Ras/Raf/MEK/ERK singal transduction plays an important role in cell proliferation, differentiation, apoptosis, metastasis and metabolism. This investigation focused on this signal pathway and chose farnesyl transferase (FTase) as the main target and Raf-1 kinase as the second target. A lot of compounds were selected to construct the pharmacophore models of farnesyl transferase inhibitors (FTIs) and Raf-1 kinase inhibitors by using computer-aided drug design (CADD). The pharmacophore of FTIs is constituted by a hydrogen bonding acceptor, an aromatic ring, a positive ionizable and two hydrophobic regions; the pharmacophore of Raf-1 kinase is constituted by a hydrogen donor, a hydrogen acceptor, a hydrophobic regions and an aromatic ring. There are some similarities between the two pharmacophores. After analysis of the constructions of these two pharmacophores, some new aminomethylbenzoic acid derivatives with good forecasting activity against both of FTase and Raf-1 kinase were designed with these new pharmacophore models.
Antineoplastic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Computer-Aided Design
;
Drug Delivery Systems
;
Drug Design
;
Enzyme Inhibitors
;
chemical synthesis
;
chemistry
;
Farnesyltranstransferase
;
antagonists & inhibitors
;
Molecular Structure
;
Proto-Oncogene Proteins c-raf
;
antagonists & inhibitors
;
Signal Transduction