1.Analysis of a child with Very early onset inflammatory bowel disease due to compound heterozygous variants of IL10RA and DUOX2 genes.
Cuifang ZHENG ; Wenhui HU ; Zhuowen YU ; Kuiran DONG ; Ying HUANG
Chinese Journal of Medical Genetics 2023;40(11):1404-1408
OBJECTIVE:
To explore the genetic basis of a child with Very early onset inflammatory bowel disease (VEOIBD).
METHODS:
A female child who had presented at the Children's Hospital of Fudan University on May 23, 2018 due to occurrence of diarrhea and fever 6 days after birth was selected as the study subject. Clinical data of the child was collected. Family-based whole-exome sequencing (WES) was carried out. Candidate variant was verified by Sanger sequencing and PCR of the patient and her parents.
RESULTS:
The child had developed the symptoms 6 days after birth, with main manifestations including diarrhea, fever, failure to thrive, rectovestibular fistula and hypothyroidism. An enterostomy was performed at the age of 3.5 months due to severe intestinal adhesion and obstruction. Based on her clinical manifestations, colonoscopic finding, and results of biopsies, she was diagnosed with VEOIBD in conjunct with congenital hypothyroidism. Replacement treatment of levothyroxine was given since one month of age. Family-based WES revealed that the child has harbored compound heterozygous variants of the DUOX2 gene, namely c.2654G>T (p.R885L) and c.505C>T (p.R169W), in addition with a heterozygous c.301C>T (p.R101W) variant of the IL10RA gene. Re-analysis of the WES data revealed that the patient also had a 333 bp deletion spanning exon 1 of the IL10RA gene (Chr11: 117857034_117857366).
CONCLUSION
For patients with VEOIBD, genetic testing is recommended. Presence of additional DUOX2 gene variants might have exacerbated the clinical symptoms in this patient. Above finding has facilitated genetic counseling and prenatal diagnosis for this family, and raised clinicians' awareness of this rare disease.
Female
;
Humans
;
Infant
;
Pregnancy
;
Diarrhea
;
Dual Oxidases/genetics*
;
Exons
;
Failure to Thrive
;
Inflammatory Bowel Diseases/genetics*
2.Clinical analysis of a child with cardio-facio-cutaneous syndrome due to a de novo variant of MAP2K1 gene.
Hongyao CAO ; Guanglei TONG ; Ru HUANG ; Taocheng ZHOU ; Weiwei ZHANG
Chinese Journal of Medical Genetics 2022;39(10):1129-1134
OBJECTIVE:
To explore the genotype-phenotype correlation of a patient with cardio-facio-cutaneous syndrome (CFCS) due to variant of the MAP2K1 gene.
METHODS:
DNA was extracted from peripheral blood samples of the infant and his parents and subjected to whole exome sequencing. Candidate variant was verified by Sanger sequencing.
RESULTS:
The patient had typical CFCS facies and developmental delay, and was found to harbor a de novo heterozygous c.389A>G (p.Tyr130Cys) missense variant in exon 3 of the MAP2K1 gene. Based on the American college of Medical Genetics and Genomics guidelines, this variant was classified as likely pathogenic.
CONCLUSION
This patient has differed from previously reported cases by having no cardiac anomaly or seizures but typical facial features and skin abnormalities accompanied by growth retardation, intellectual impairment, and urinary malformation. It has therefore enriched the phenotypic spectrum of CFCS due to variants of the MAP2K1 gene.
Ectodermal Dysplasia/genetics*
;
Facies
;
Failure to Thrive/genetics*
;
Heart Defects, Congenital
;
Humans
;
MAP Kinase Kinase 1/genetics*
;
Mutation
3.Cardio
Baiyu CHEN ; Shimeng CHEN ; Juan XIONG ; Fei YIN
Journal of Central South University(Medical Sciences) 2021;46(4):432-437
Cardio-facio-cutaneous (CFC) syndrome is an extremely rare autosomal dominant genetic disease due to BRAF and other gene mutations. The main characteristics of the patients are craniofacial deformities, cardiac malformations, skin abnormalities, delay of language and motor development, gastrointestinal dysfunction, intellectual disability, and epilepsy. In this case, the child has a typical CFC syndrome face and developmental delay. The gene results of the second-generation sequencing technology showed that there was a mutation site c.1741A>G (p. Asn581Asp) (heterozygous) in exon 14 of the BRAF (NM_004333.5) gene. The mutation was not observed in the child's parents. The above-mentioned mutation may be a de novo mutation. There is no effective therapy for this disease so far.
Abnormalities, Multiple
;
Child
;
Ectodermal Dysplasia/genetics*
;
Facies
;
Failure to Thrive
;
Heart Defects, Congenital/genetics*
;
Humans
;
Mutation
;
Proto-Oncogene Proteins B-raf/genetics*
4.Identification of a de novo MAP2K1 gene variant in an affected patient with Cardio-facio-cutaneous syndrome.
Qingming WANG ; Pengliang CHEN ; Qian PENG ; Jianxin LIU ; Yuling HUANG ; Zhihong TANG ; Yanhui LIU ; Haiming YUAN
Chinese Journal of Medical Genetics 2020;37(5):567-569
OBJECTIVE:
To explore the genotype-phenotype correlation of Cardio-facio-cutaneous syndrome (CFCS) caused by MAP2K1 gene variants.
METHODS:
Genomic DNA was extracted from peripheral blood sample from a child patient and his parents. Whole exome sequencing (WES) was carried out for the patient. Suspected variant was verified by Sanger sequencing.
RESULTS:
The patient was a 1-year-8-month old Chinese male who manifested short stature, psychomotor retardation, relative macrocephaly, distinctive facial features, and congenital heart disease. WES test revealed a heterozygous missense c.389A>G (p.Tyr130Cys) variant in the MAP2K1 gene. Sanger sequencing has confirmed the variant as de novo. According to ACMG/AMP guidelines, the variant was classified as pathogenic.
CONCLUSION
Compared with previously reported CFCS cases due to MAP2K1 variants. The patient showed obvious behavioral problems, good appetite and tricuspid regurgitation, which may to be novel features for CFCS.
China
;
Ectodermal Dysplasia
;
genetics
;
Facies
;
Failure to Thrive
;
genetics
;
Genetic Association Studies
;
Genetic Variation
;
Heart Defects, Congenital
;
genetics
;
Heterozygote
;
Humans
;
Infant
;
MAP Kinase Kinase 1
;
genetics
;
Male
;
Mutation
;
Whole Exome Sequencing
5.Failure to thrive and dyslipidemia caused by citrin deficiency: a novel clinical phenotype.
Yuan-Zong SONG ; Li GUO ; Yan-Ling YANG ; Lian-Shu HAN ; Keiko KOBAYASHI ; Takeyori SAHEKI
Chinese Journal of Contemporary Pediatrics 2009;11(5):328-332
Two clinical phenotypes for citrin deficiency (CD) have been reported. One is adult-onset citrullinemia type II (CTLN2) and another is neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). A child with CD and who had failure to thrive (FTT) and dyslipidemia as main clinical manifestations is reported here. Both the weight-and length-for-age at 18 months dropped below the 3rd percentile in the corresponding WHO anthropometry percentile charts, while blood biochemical analysis revealed dramatically increased triglyceride and total cholesterol, together with reduced HDL-cholesterol. Inquiries revealed his aversion to rice and fondness for fish since the age of one year, a peculiar habit which could not be corrected. Since the age of two years, the peculiar diet became more obvious, and slightly increased citrulline and threonine levels were detected on blood amino acid analysis. At the age of two years and five months he was suspected to have CD. Since then, he has been fed in accordance with his own food preferences, and FTT improved gradually, with weight-for-age, in particular, recovering beyond the 3rd percentile at three years of age, and dyslipidemia was also ameliorated gradually. SLC25A13 gene analysis revealed a homozygote of 851del4, and CD was thus confirmed. Diet survey at four years and seven months revealed a fondness for high-protein and low-carbohydrate foods, such as seafood, meat, eggs and milk. This child presented with FTT and dyslipidemia as main clinical manifestations and this was a novel CD phenotype different from NICCD and CTLN2.
Body Weight
;
Calcium-Binding Proteins
;
deficiency
;
Cholestasis, Intrahepatic
;
etiology
;
Citrulline
;
blood
;
Dyslipidemias
;
etiology
;
Failure to Thrive
;
etiology
;
Humans
;
Infant
;
Lipids
;
blood
;
Male
;
Mitochondrial Membrane Transport Proteins
;
genetics
;
Mutation
;
Organic Anion Transporters
;
deficiency
;
Phenotype