1.Nanomedicine Approaches for Treatment of Menopausal Symptoms.
Fatemeh ABDI ; Fahimeh RAMEZANI TEHRANI ; Hamid MOBEDI ; Mahrokh DOLATIAN ; Nariman MOSAFFA
Journal of Menopausal Medicine 2016;22(3):127-128
No abstract available.
Nanomedicine*
2.Effect of Different Types of Diagnostic Criteria for Gestational Diabetes Mellitus on Adverse Neonatal Outcomes: A Systematic Review, Meta-Analysis, and Meta-Regression
Fahimeh Ramezani TEHRANI ; Marzieh Saei Ghare NAZ ; Razieh BIDHENDI-YARANDI ; Samira BEHBOUDI-GANDEVANI
Diabetes & Metabolism Journal 2022;46(4):605-619
Background:
Evidence supporting various diagnostic criteria for diagnose gestational diabetes mellitus (GDM) are consensus-based, needs for additional evidence related to outcomes. Therefore, the aim of this systematic-review and meta-analysis was to assess the impact of different GDM diagnostic-criteria on the risk of adverse-neonatal-outcomes.
Methods:
Electronic databases including Scopus, PubMed, and Web of Sciences were searched to retrieve English original, population-based studies with the universal GDM screening approach, up to January-2020. GDM diagnostic criteria were classified in seven groups and International Association of the Diabetes and Pregnancy Study Groups (IADPSG) was considered as reference one. We used the Mantel–Haenszel method to calculate the pooled odds of events. The possibility of publication bias was examined by Begg’s test.
Results:
A total of 55 population-based studies consisting of 1,604,391 pregnant women with GDM and 7,770,855 non-GDM counterparts were included. Results showed that in all diagnostic-criteria subgroups, the risk of adverse neonatal outcomes including macrosomia, hyperbilirubinemia, respiratory distress syndrome, neonatal hypoglycemia, neonatal intensive care unit admission, preterm birth, and birth-trauma were significantly higher than the non-GDM counterparts were significantly higher than non-GDM counterparts. Meta-regression analysis revealed that the magnitude of neonatal risks in all diagnostic-criteria subgroups are similar.
Conclusion
Our results showed that the risk of adverse-neonatal-outcome increased among women with GDM, but the magnitude of risk was not different among those women who were diagnosed through more or less intensive strategies. These findings may help health-care-providers and policy-makers to select the most cost-effective approach for the screening of GDM among pregnant women.
3.Possible cognition changes in women with polycystic ovary syndrome: a narrative review
Marzieh Saei Ghare NAZ ; Fatemeh Alsadat RAHNEMAEI ; Fahimeh Ramezani TEHRANI ; Fatemeh SAYEHMIRI ; Vida GHASEMI ; Mojdeh BANAEI ; Giti OZGOLI
Obstetrics & Gynecology Science 2023;66(5):347-363
Nowadays, polycystic ovary syndrome (PCOS) and cognitive dysfunction are major health problems among female. This narrative review aimed to investigate cognitive dysfunction in female with PCOS. English and Persian articles published in PubMed, Scopus, Web of Science, Google Scholar, PsycINFO, Scientific Information Database, and Cochrane Database of Systematic Reviews until May 2022 were searched. Sixteen studies involving 850 female with PCOS and 974 controls were assessed. In these studies, the association between biochemical factors and symptoms of PCOS and memory, attention, executive functioning, information processing speed, and visuospatial skills was evaluated. The literature review revealed the possible cognitive changes in female with PCOS. This study summarized the different aspects of cognitive function in female with PCOS due to medication, psychological problems (mood disorders caused by disease symptoms and complications), and biochemical markers, such as metabolic and sex hormone abnormalities. Considering the existing scientific gap regarding the possibility of cognitive complications in female with PCOS, further biological studies should be conducted to evaluate the potential mechanisms involved.
4.The impact of GABA and GABAergic pathway in polycystic ovary syndrome: a systematic review
Farzaneh MOTAFEGHI ; Mina AMIRI ; Mahsa NOROOZZADEH ; Fahimeh Ramezani TEHRANI
Obstetrics & Gynecology Science 2025;68(2):93-108
Emerging evidence indicates that dysfunction of the gamma-aminobutyric acid (GABA)ergic pathway may contribute to the pathophysiology of polycystic ovary syndrome (PCOS), and GABA demonstrates potential in the management of PCOS symptoms. This systematic review aimed to determine the role of the GABAergic pathway in PCOS and evaluate the impact of GABA on improving the condition. Web of Science, Embase, Scopus, Cochrane, and PubMed databases were systematically searched for experimental studies, clinical trials, animal studies, and cellular investigations. The search was conducted for relevant English-language manuscripts, published up to February 2024, using keywords, such as "polycystic ovary syndrome", PCOS, "gamma-aminobutyric acid" and GABA. Quality assessment of the included studies was performed using the Cochrane Collaboration's tool and the Newcastle-Ottawa scale. The results indicate that GABAergic dysfunction adversely affects gonadotrophin-releasing hormone neuronal activity, leading to hormonal imbalances and reproductive issues. Prenatal androgen exposure and kisspeptin signaling influence GABAergic transmission to GnRH neurons, thereby linking GABA to the pathogenesis of PCOS. Additionally, GABAergic signaling affects peripheral tissues relevant to PCOS, including the immune system, gut-brain axis, and ovaries. GABA supplementation has demonstrated potential benefits in enhancing metabolic and reproductive health, such as reducing insulin resistance and modulating sex hormone levels, as supported by animal models and clinical studies involving females with PCOS. The GABAergic signaling pathway may represent a promising therapeutic target for the management of PCOS. Nevertheless, further studies are required to validate these findings and deepen our understanding of the role of GABA in the pathogenesis and treatment of PCOS.
5.The impact of GABA and GABAergic pathway in polycystic ovary syndrome: a systematic review
Farzaneh MOTAFEGHI ; Mina AMIRI ; Mahsa NOROOZZADEH ; Fahimeh Ramezani TEHRANI
Obstetrics & Gynecology Science 2025;68(2):93-108
Emerging evidence indicates that dysfunction of the gamma-aminobutyric acid (GABA)ergic pathway may contribute to the pathophysiology of polycystic ovary syndrome (PCOS), and GABA demonstrates potential in the management of PCOS symptoms. This systematic review aimed to determine the role of the GABAergic pathway in PCOS and evaluate the impact of GABA on improving the condition. Web of Science, Embase, Scopus, Cochrane, and PubMed databases were systematically searched for experimental studies, clinical trials, animal studies, and cellular investigations. The search was conducted for relevant English-language manuscripts, published up to February 2024, using keywords, such as "polycystic ovary syndrome", PCOS, "gamma-aminobutyric acid" and GABA. Quality assessment of the included studies was performed using the Cochrane Collaboration's tool and the Newcastle-Ottawa scale. The results indicate that GABAergic dysfunction adversely affects gonadotrophin-releasing hormone neuronal activity, leading to hormonal imbalances and reproductive issues. Prenatal androgen exposure and kisspeptin signaling influence GABAergic transmission to GnRH neurons, thereby linking GABA to the pathogenesis of PCOS. Additionally, GABAergic signaling affects peripheral tissues relevant to PCOS, including the immune system, gut-brain axis, and ovaries. GABA supplementation has demonstrated potential benefits in enhancing metabolic and reproductive health, such as reducing insulin resistance and modulating sex hormone levels, as supported by animal models and clinical studies involving females with PCOS. The GABAergic signaling pathway may represent a promising therapeutic target for the management of PCOS. Nevertheless, further studies are required to validate these findings and deepen our understanding of the role of GABA in the pathogenesis and treatment of PCOS.
6.The impact of GABA and GABAergic pathway in polycystic ovary syndrome: a systematic review
Farzaneh MOTAFEGHI ; Mina AMIRI ; Mahsa NOROOZZADEH ; Fahimeh Ramezani TEHRANI
Obstetrics & Gynecology Science 2025;68(2):93-108
Emerging evidence indicates that dysfunction of the gamma-aminobutyric acid (GABA)ergic pathway may contribute to the pathophysiology of polycystic ovary syndrome (PCOS), and GABA demonstrates potential in the management of PCOS symptoms. This systematic review aimed to determine the role of the GABAergic pathway in PCOS and evaluate the impact of GABA on improving the condition. Web of Science, Embase, Scopus, Cochrane, and PubMed databases were systematically searched for experimental studies, clinical trials, animal studies, and cellular investigations. The search was conducted for relevant English-language manuscripts, published up to February 2024, using keywords, such as "polycystic ovary syndrome", PCOS, "gamma-aminobutyric acid" and GABA. Quality assessment of the included studies was performed using the Cochrane Collaboration's tool and the Newcastle-Ottawa scale. The results indicate that GABAergic dysfunction adversely affects gonadotrophin-releasing hormone neuronal activity, leading to hormonal imbalances and reproductive issues. Prenatal androgen exposure and kisspeptin signaling influence GABAergic transmission to GnRH neurons, thereby linking GABA to the pathogenesis of PCOS. Additionally, GABAergic signaling affects peripheral tissues relevant to PCOS, including the immune system, gut-brain axis, and ovaries. GABA supplementation has demonstrated potential benefits in enhancing metabolic and reproductive health, such as reducing insulin resistance and modulating sex hormone levels, as supported by animal models and clinical studies involving females with PCOS. The GABAergic signaling pathway may represent a promising therapeutic target for the management of PCOS. Nevertheless, further studies are required to validate these findings and deepen our understanding of the role of GABA in the pathogenesis and treatment of PCOS.
7.The impact of GABA and GABAergic pathway in polycystic ovary syndrome: a systematic review
Farzaneh MOTAFEGHI ; Mina AMIRI ; Mahsa NOROOZZADEH ; Fahimeh Ramezani TEHRANI
Obstetrics & Gynecology Science 2025;68(2):93-108
Emerging evidence indicates that dysfunction of the gamma-aminobutyric acid (GABA)ergic pathway may contribute to the pathophysiology of polycystic ovary syndrome (PCOS), and GABA demonstrates potential in the management of PCOS symptoms. This systematic review aimed to determine the role of the GABAergic pathway in PCOS and evaluate the impact of GABA on improving the condition. Web of Science, Embase, Scopus, Cochrane, and PubMed databases were systematically searched for experimental studies, clinical trials, animal studies, and cellular investigations. The search was conducted for relevant English-language manuscripts, published up to February 2024, using keywords, such as "polycystic ovary syndrome", PCOS, "gamma-aminobutyric acid" and GABA. Quality assessment of the included studies was performed using the Cochrane Collaboration's tool and the Newcastle-Ottawa scale. The results indicate that GABAergic dysfunction adversely affects gonadotrophin-releasing hormone neuronal activity, leading to hormonal imbalances and reproductive issues. Prenatal androgen exposure and kisspeptin signaling influence GABAergic transmission to GnRH neurons, thereby linking GABA to the pathogenesis of PCOS. Additionally, GABAergic signaling affects peripheral tissues relevant to PCOS, including the immune system, gut-brain axis, and ovaries. GABA supplementation has demonstrated potential benefits in enhancing metabolic and reproductive health, such as reducing insulin resistance and modulating sex hormone levels, as supported by animal models and clinical studies involving females with PCOS. The GABAergic signaling pathway may represent a promising therapeutic target for the management of PCOS. Nevertheless, further studies are required to validate these findings and deepen our understanding of the role of GABA in the pathogenesis and treatment of PCOS.
8.The impact of GABA and GABAergic pathway in polycystic ovary syndrome: a systematic review
Farzaneh MOTAFEGHI ; Mina AMIRI ; Mahsa NOROOZZADEH ; Fahimeh Ramezani TEHRANI
Obstetrics & Gynecology Science 2025;68(2):93-108
Emerging evidence indicates that dysfunction of the gamma-aminobutyric acid (GABA)ergic pathway may contribute to the pathophysiology of polycystic ovary syndrome (PCOS), and GABA demonstrates potential in the management of PCOS symptoms. This systematic review aimed to determine the role of the GABAergic pathway in PCOS and evaluate the impact of GABA on improving the condition. Web of Science, Embase, Scopus, Cochrane, and PubMed databases were systematically searched for experimental studies, clinical trials, animal studies, and cellular investigations. The search was conducted for relevant English-language manuscripts, published up to February 2024, using keywords, such as "polycystic ovary syndrome", PCOS, "gamma-aminobutyric acid" and GABA. Quality assessment of the included studies was performed using the Cochrane Collaboration's tool and the Newcastle-Ottawa scale. The results indicate that GABAergic dysfunction adversely affects gonadotrophin-releasing hormone neuronal activity, leading to hormonal imbalances and reproductive issues. Prenatal androgen exposure and kisspeptin signaling influence GABAergic transmission to GnRH neurons, thereby linking GABA to the pathogenesis of PCOS. Additionally, GABAergic signaling affects peripheral tissues relevant to PCOS, including the immune system, gut-brain axis, and ovaries. GABA supplementation has demonstrated potential benefits in enhancing metabolic and reproductive health, such as reducing insulin resistance and modulating sex hormone levels, as supported by animal models and clinical studies involving females with PCOS. The GABAergic signaling pathway may represent a promising therapeutic target for the management of PCOS. Nevertheless, further studies are required to validate these findings and deepen our understanding of the role of GABA in the pathogenesis and treatment of PCOS.