1.T-CAM, a fastatin-FIII 9-10 fusion protein, potently enhances anti-angiogenic and anti-tumor activity via alphavbeta3 and alpha5beta1 integrins.
Ju Ock NAM ; Mi Yeon JUNG ; Narendra THAPA ; Byung Heon LEE ; Rang Woon PARK ; In San KIM
Experimental & Molecular Medicine 2008;40(2):196-207
We made fusion protein of fastatin and FIII 9-10, termed tetra-cell adhesion molecule (T-CAM) that can interact simultaneously with alphavbeta3 and alpha5beta1 integrins, both playing important roles in tumor angiogenesis. T-CAM can serve as a cell adhesion substrate mediating adhesion and migration of endothelial cells in alphavbeta3 and alpha5beta1 integrin-dependent manner. T-CAM showed pronounced anti-angiogenic activities such as inhibition of endothelial cell tube formation, endothelial cell proliferation, and induction of endothelial cell apoptosis. T-CAM also inhibited angiogenesis and tumor growth in mouse xenograft model. The anti-angiogenic and anti-tumoral activity of molecule like fastatin could be improved by fusing it with integrin-recognizing cell adhesion domain from other distinct proteins. The strategy of combining two distinct anti-angiogenic molecules or cell adhesion domains could facilitate designing improved anticancer agent of therapeutic value.
Angiogenesis Inhibitors/chemistry/*pharmacology
;
Animals
;
Antineoplastic Agents/chemistry/*pharmacology
;
Base Sequence
;
Benzocaine/chemistry/*pharmacology
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Cells, Cultured
;
Chloramphenicol/chemistry/*pharmacology
;
DNA Primers
;
Drug Combinations
;
Factor VIII/chemistry/*pharmacology
;
Humans
;
Integrin alpha5beta1/*physiology
;
Integrin alphaVbeta3/*physiology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Nitrofurazone/chemistry/*pharmacology
;
Recombinant Fusion Proteins/chemistry/*pharmacology
2.Enhancing effect of deoxynivalenol-mediated GRP78 down-regulation on heavy chain secretion and bioactivity of two-chain FVIII gene co-transfected cells.
Fu-Xiang ZHU ; Shu-De YANG ; Ze-Long LIU ; Jing MIAO ; Hui-Ge QU ; Xiao-Yan CHI
Acta Pharmaceutica Sinica 2011;46(12):1457-1461
Although two chain transfering separately could be used to overcome the volume limitation of adeno-associated virus vectors (AAV) in coagulation factor VIII (FVIII) gene delivery, it leads to chain imbalance for inefficient heavy chain secretion. In this study we aimed to improve the efficacy of two chain strategy in FVIII gene delivery through the degradation of glucose-regulated protein 78 (GRP78) known as a protein chaperone in endoplasmic reticulum (ER) by deoxynivalenol (DON) to decrease GRP78-bound FVIII heavy chain. By treating the two-chain gene transduced 293 cells with DON, the heavy chain (HC) secretion and FVIII bioactivity were observed. Data showed that 293 cells after three hours post-treatment with DON at a concentration of 500 ng mL(-1) resulted in obvious decrease the level of GRP78 but no effect on the cell proliferation. The HC secreted from DON-treated cells transfected with HC gene alone was 59 +/- 11 ng mL(-1), higher than that secreted by control cells (15 +/- 4 ng mL(-1)), and the HC secretion was further increasing to 146 +/- 34 ng mL(-1) in light chain (LC) gene co-transfected cells with an activity measured up to 0.66 +/- 0.15 U mL(-1), also greater than control cells (76 +/- 17 ng mL(-1) and 0.35 +/- 0.09 U mL(-1)). Taken together, these data suggest that DON-mediated GRP78 down-regulation could improve the efficacy of two-chain FVIII gene transfering by facilitating HC secretion, providing an experimental basis for in vivo dual-AAV application in FVIII gene delivery.
Cell Proliferation
;
Down-Regulation
;
Factor VIII
;
chemistry
;
genetics
;
secretion
;
Gene Transfer Techniques
;
HEK293 Cells
;
Heat-Shock Proteins
;
metabolism
;
Humans
;
Transfection
;
Trichothecenes
;
pharmacology