1.Tracking of Stem Cells from Human Exfoliated Deciduous Teeth Labeled with Molday ION Rhodamine-B during Periodontal Bone Regeneration in Rats
Nan ZHANG ; Li XU ; Hao SONG ; Chunqing BU ; Jie KANG ; Chuanchen ZHANG ; Xiaofei YANG ; Fabin HAN
International Journal of Stem Cells 2023;16(1):93-107
Background and Objectives:
Chronic periodontitis can lead to alveolar bone resorption and eventually tooth loss. Stem cells from exfoliated deciduous teeth (SHED) are appropriate bone regeneration seed cells. To track the survival, migration, and differentiation of the transplanted SHED, we used super paramagnetic iron oxide particles (SPIO) Molday ION Rhodamine-B (MIRB) to label and monitor the transplanted cells while repairing periodontal bone defects.
Methods:
and Results: We determined an appropriate dose of MIRB for labeling SHED by examining the growth and osteogenic differentiation of labeled SHED. Finally, SHED was labeled with 25 μg Fe/ml MIRB before being transplanted into rats. Magnetic resonance imaging was used to track SHED survival and migration in vivo due to a low-intensity signal artifact caused by MIRB. HE and immunohistochemical analyses revealed that both MIRB-labeled and unlabeled SHED could promote periodontal bone regeneration. The colocalization of hNUC and MIRB demonstrated that SHED transplanted into rats could survive in vivo. Furthermore, some MIRB-positive cells expressed the osteoblast and osteocyte markers OCN and DMP1, respectively. Enzyme-linked immunosorbent assay revealed that SHED could secrete protein factors, such as IGF-1, OCN, ALP, IL-4, VEGF, and bFGF, which promote bone regeneration. Immunofluorescence staining revealed that the transplanted SHED was surrounded by a large number of host-derived Runx2- and Col II-positive cells that played important roles in the bone healing process.
Conclusions
SHED could promote periodontal bone regeneration in rats, and the survival of SHED could be tracked in vivo by labeling them with MIRB. SHED are likely to promote bone healing through both direct differentiation and paracrine mechanisms.
2.Expression of ASBT and ASGPR mediated receptors for oral liver-targeting preparations in a rat model of hepatic alveolar echinococcosis
Ruixue GAO ; Chunhui HU ; Fabin ZHANG ; Pan GAO ; Xuehui GAN ; Yaogang ZHANG ; Bofan JIANG
Journal of Clinical Hepatology 2021;37(4):846-851
ObjectiveTo investigate the feasibility of apical sodium-dependent bile salt transporter (ASBT) and asialoglycoprotein receptor (ASGPR) in the design of oral liver-targeting preparations for the treatment of hepatic alveolar echinococcosis (HAE) by measuring the expression of ASBT and ASGPR. MethodsA total of 18 male Sprague-Dawley rats were selected, among which 10 were used to establish a model of HAE (HAE group) and 8 were used as controls (normal group). Immunofluorescence assay, Western blotting, and quantitative real-time PCR were used to measure the expression distribution, protein expression level, and mRNA expression level of ASBT in the ileal tissue of HAE model rats and normal rats; the same methods were used to measure the expression level of ASGPR in the non-diseased liver tissue and the marginal zone of liver tissue lesion of HAE model rats and the liver tissue of normal rats. The t-test was used for comparison of normally distributed continuous data between two groups; a one-way analysis of variance was used for comparison between three groups, and the least significant difference t-test was used for comparison between two groups. ResultsThe results of immunofluorescence assay, Western blotting, and quantitative real-time PCR showed that compared with the normal group, the HAE group had significantly upregulated expression of ASBT in the ileal tissue (t=5309, 4.110, and 28.060, all P<0.05) and a significantly higher expression level of ASGPR (the closer to the lesion, the higher the expression) (F=110666, 128.201, and 143.879, all P<0.001). ConclusionASBT and ASGPR can be used as potential mediated receptors for oral liver-targeting preparations for HAE, which provides a theoretical basis for the design of oral liver-targeting preparations for the treatment of HAE.
3.Relationship between serum procalcitonin level and severity and prognosis in patients with traumatic brain injury in plateau areas
Lianyu ZHANG ; Fabin ZHANG ; Huanying BAI ; Huibin YUN ; Zhao ZHENG ; Shuncai LIU ; Shenghua A ; Zhongshan SHI ; Yuhai HU
Chinese Critical Care Medicine 2024;36(1):56-61
Objective:To analyze the changes rule of serum procalcitonin (PCT) levels in patients with traumatic brain injury in plateau areas, and to evaluate its value in assessing the severity and prognosis of the patients.Methods:A prospective cohort study was conducted. The patients with traumatic brain injury admitted to the critical care medicine departments of Xining Third People's Hospital (at an altitude of 2 260 metres) and Golmud City People's Hospital (at an altitude of 2 780 metres) from May 2018 to September 2022 were enrolled. According to the Glasgow coma scale (GCS) score at admission, the patients were divided into mild injury group (GCS score 13-15), severe injury group (GCS score 9-12), and critical injury group (GCS score 3-8). All patients received active treatment. Chemiluminescence immunoassay was used to measure the serum PCT levels of patients on the 1st, 3rd, 5th, and 7th day of admission. The Kendall tau-b correlation method was used to analyze the correlation between serum PCT levels at different time points and the severity of the disease. The patients were followed up until October 30, 2022. The prognosis of the patients was collected. The baseline data of patients with different prognosis were compared. The Cox regression method was used to analyze the relationship between baseline data, serum PCT levels at different time points and prognosis. Receiver operator characteristic curve (ROC curve) was drawn to analyze the predictive value of serum PCT levels at different time points for death during follow-up.Results:Finally, a total of 120 patients with traumatic brain injury were enrolled, including 52 cases in the mild injury group, 40 cases in the severe injury group, and 28 cases in the critical injury group. The serum PCT levels of patients in the mild injury group showed a continuous downward trend with the prolongation of admission time. The serum PCT levels in the severe injury and critical injury groups reached their peak at 3 days after admission, and were significantly higher than those in the mild injury group (μg/L: 3.53±0.68, 4.47±0.63 vs. 0.40±0.14, both P < 0.05), gradually decreasing thereafter, but still significantly higher than the mild injured group at 7 days. Kendall tau-b correlation analysis showed that there was a significant positive correlation between serum PCT levels on days 1, 3, 5, and 7 of admission and the severity of disease ( r value was 0.801, 0.808, 0.766, 0.528, respectively, all P < 0.01). As of October 30, 2022, 92 out of 120 patients with traumatic brain injury survived and 28 died, with a mortality of 23.33%. Compared with the survival group, the GCS score, serum interleukin-6 (IL-6) levels, white blood cell count (WBC) in peripheral blood, and PCT levels in cerebrospinal fluid at admission in the death group were significantly increased [GCS score: 5.20±0.82 vs. 4.35±0.93, IL-6 (ng/L): 1.63±0.45 vs. 0.95±0.27, blood WBC (×10 9/L): 14.31±2.03 vs. 11.95±1.98, PCT in cerebrospinal fluid (μg/L): 11.30±1.21 vs. 3.02±0.68, all P < 0.01]. The serum PCT levels of patients in the survival group showed a continuous downward trend with prolonged admission time. The serum PCT level in the death group peaked at 3 days after admission and was significantly higher than that in the survival group (μg/L: 4.11±0.62 vs. 0.52±0.13, P < 0.01), gradually decreasing thereafter, but still significantly higher than the survival group at 7 days. Cox regression analysis showed that serum IL-6 levels [hazard ratio ( HR) = 17.347, 95% confidence interval (95% CI) was 5.874-51.232], WBC in peripheral blood ( HR = 1.383, 95% CI was 1.125-1.700), PCT levels in cerebrospinal fluid ( HR = 1.952, 95% CI was 1.535-2.482) at admission and serum PCT levels on admission days 1, 3, 5, and 7 [ HR (95% CI) was 6.776 (1.844-24.906), 1.840 (1.069-3.165), 3.447 (1.284-9.254), and 6.666 (1.214-36.618), respectively] were independent risk factors for death during follow-up in patients with traumatic brain injury (all P < 0.05). ROC curve analysis showed that the AUC of serum PCT levels on days 1, 3, 5, and 7 for predicting death during follow-up in patients with traumatic brain injury was all > 0.8 [AUC (95% CI) was 0.898 (0.821-0.975), 0.800 (0.701-0.899), 0.899 (0.828-0.970), 0.865 (0.773-0.958), respectively], indicating ideal predictive value. The optimal cut-off value for serum PCT level at 3 days of admission was 1.88 μg/L, with the sensitivity of 78.6% and specificity of 88.0% for predicting death during follow-up. Conclusions:Abnormal expression of serum PCT levels in patients with traumatic brain injury on the 3rd day of admission was found. The serum PCT levels greater than 3 μg/L may be related to severe illness. The serum PCT levels greater than 1.88 μg/L can predict the poor prognosis of patients. Dynamic observation of changes in serum PCT levels has good evaluation value for the severity and prognosis of patients with traumatic brain injury in plateau areas.