1.Progress of Niemann-Pick type C1 Like 1 on cholesterol metabolism.
Jun-Yao YANG ; Yan-Wei HU ; Peng ZHANG ; Lei ZHENG ; Qian WANG
Acta Physiologica Sinica 2012;64(6):721-728
The polytopic transmembrane protein, Niemann-Pick type C1 Like 1 (NPC1L1), is the key point of exogenous cholesterol absorption and plays an important role in cholesterol metabolism. However, the molecular mechanism of NPC1L1's role in cholesterol uptake remains unclear. NPC1L1 expression is highly regulated by a variety of molecular actors. Nuclear receptors regulate NPC1L1 expression through its promoter region. Polyunsaturated fatty acids down-regulates NPC1L1 expression by the way of sterol regulatory element binding protein 2 (SREBP2). In addition, curcumin and sphingosine-phosphate take part in the regulation of NPC1L1 expression. NPC1L1 has been recognized as an essential protein for sterol absorption and is the molecular target of ezetimibe. Moreover, inhibition of the expression of NPC1L1 has been shown to have beneficial effects on components of the metabolic syndrome. The recent progress in the structure, function and regulation of NPC1L1 is reviewed.
Azetidines
;
pharmacology
;
Biological Transport
;
Cholesterol
;
metabolism
;
Ezetimibe
;
Fatty Acids
;
metabolism
;
Humans
;
Membrane Proteins
;
metabolism
;
Metabolic Syndrome
;
physiopathology
;
Receptors, Cytoplasmic and Nuclear
;
metabolism
;
Sterol Regulatory Element Binding Protein 2
;
metabolism
2.The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36.
Ji Sung YOON ; Jun Sung MOON ; Yong Woon KIM ; Kyu Chang WON ; Hyoung Woo LEE
Journal of Korean Medical Science 2016;31(4):547-552
Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36.
Animals
;
Anticholesteremic Agents/*pharmacology
;
Antigens, CD36/antagonists & inhibitors/genetics/*metabolism
;
Cells, Cultured
;
Ezetimibe/*pharmacology
;
Flow Cytometry
;
Glucose/toxicity
;
Insulin/genetics/metabolism/secretion
;
Insulin-Secreting Cells/cytology/*drug effects/metabolism
;
Male
;
Palmitic Acid/metabolism
;
RNA, Messenger/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/metabolism
;
Real-Time Polymerase Chain Reaction