1.Quantification and size distribution of 24-hour urinary extracellular vesicles from healthy adults.
Hanfei LIN ; Xinyu LIU ; Xiaomeng XU ; Luca Musante Luca MUSANTE ; Harry Holthofer Harry HOLTHOFER ; Hequn ZOU
Journal of Southern Medical University 2015;35(11):1530-1545
OBJECTIVETo analyze the quantity and size distribution of 24-hour urinary extracellular vesicles (uEVs) from healthy adults.
METHODSThe 24-hour uEVs from 9 healthy adults were isolated by hydrostatic filtration dialysis (HFD). The effectiveness of uEVs enrichment was evaluated using Western blotting and transmission electron microscopy (TEM). The quantity and size distribution of the uEVs was analyzed with BCA protein quantification, TEM, and nanoparticle tracking analysis (NTA).
RESULTSuEVs with different sizes and morphologies were observed under TEM. Western blotting confirmed the expression of TSG101 in all the uEV fractions from the 9 donors, ranging from 132.50 to 760.70 ng/mL. NTA results showed that the number of 24-hour uEVs amount ranged from 3.56 × 10¹² particles to 5.12 × 10¹² particles, with a CV of 14.23%. The proportion of the vesicles with a diameter <40 nm was 0.04%-0.69% with a number range of (1.80-26.49)× 10⁹ particles; the proportion of vesicles with a diameter of 40-100 nm (which is consistent with the size of exosomes)was 22.07%-42.08% with a number range of (1.00-1.77)× 10¹² particles. The proportion of vesicles with a diameter of 100-1000 nm (consistent with the size of microvesicles) was 57.88%-77.85% with a number range of (2.09-3.86)× 10¹² particles.
CONCLUSIONThe established HFD method allows efficient and convenient isolation of uEVs from a large amount of urine samples. The 24-hour uEVs from healthy adults show narrow differences between individuals and thus can be an ideal source of samples for relevant studies.
Adult ; Blotting, Western ; Cell-Derived Microparticles ; Exosomes ; Extracellular Vesicles ; Humans ; Microscopy, Electron, Transmission ; Nanoparticles ; Urine
2.The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics.
Abhimanyu THAKUR ; Xiaoshan KE ; Ya-Wen CHEN ; Pedram MOTALLEBNEJAD ; Kui ZHANG ; Qizhou LIAN ; Huanhuan Joyce CHEN
Protein & Cell 2022;13(9):631-654
Extracellular vesicles (EVs) are tiny biological nanovesicles ranging from approximately 30-1000 nm in diameter that are released into the extracellular matrix of most cell types and in biofluids. The classification of EVs includes exosomes, microvesicles, and apoptotic bodies, dependent on various factors such as size, markers, and biogenesis pathways. The transition of EV relevance from that of being assumed as a trash bag to be a key player in critical physiological and pathological conditions has been revolutionary in many ways. EVs have been recently revealed to play a crucial role in stem cell biology and cancer progression via intercellular communication, contributing to organ development and the progression of cancer. This review focuses on the significant research progress made so far in the role of the crosstalk between EVs and stem cells and their niche, and cellular communication among different germ layers in developmental biology. In addition, it discusses the role of EVs in cancer progression and their application as therapeutic agents or drug delivery vehicles. All such discoveries have been facilitated by tremendous technological advancements in EV-associated research, especially the microfluidics systems. Their pros and cons in the context of characterization of EVs are also extensively discussed in this review. This review also deliberates the role of EVs in normal cell processes and disease conditions, and their application as a diagnostic and therapeutic tool. Finally, we propose future perspectives for EV-related research in stem cell and cancer biology.
Biomarkers/metabolism*
;
Cell-Derived Microparticles/metabolism*
;
Exosomes
;
Extracellular Vesicles/metabolism*
;
Humans
;
Neoplasms/metabolism*
3.Effects of extracellular vesicles from various cell types on angiogenesis.
Lu REN ; Xiaofei ZHANG ; Siyuan TANG
Journal of Central South University(Medical Sciences) 2019;44(12):1423-1429
Extracellular vesicles (EVs), including apoptotic bodies, microvesicles and exosomes, play a crucial role in cell-to-cell communication. EVs derived from various cell types have the potential to deliver complex information to endothelial cells and to induce either pro- or anti-angiogenic signaling.
Cell-Derived Microparticles
;
Endothelial Cells
;
Extracellular Vesicles
;
Humans
;
Neovascularization, Pathologic
4.Extracellular Vesicles as a Source of Urological Biomarkers: Lessons Learned From Advances and Challenges in Clinical Applications to Major Diseases.
Ji Young CHOI ; Sujin KIM ; Hyo Bum KWAK ; Dong Ho PARK ; Jae Hyoung PARK ; Jeong Seon RYU ; Chang Shin PARK ; Ju Hee KANG
International Neurourology Journal 2017;21(2):83-96
Extracellular vesicles (EVs) not only eliminate unwanted molecular components, but also carry molecular cargo essential for specific intercellular communication mechanisms. As the molecular characteristics and biogenetical mechanisms of heterogeneous EVs are different, many studies have attempted to purify and characterize EVs. In particular, exosomal molecules, including proteins, lipids, and nucleic acids, have been suggested as disease biomarkers or therapeutic targets in various diseases. However, several unresolved issues and challenges remain despite these promising results, including source variability before the isolation of exosomes from body fluids, the contamination of proteins during isolation, and methodological issues related to the purification of exosomes. This paper reviews the general characteristics of EVs, particularly microvesicles and exosomes, along with their physiological roles and contribution to the pathogenesis of major diseases, several widely used methods to isolate exosomes, and challenges in the development of disease biomarkers using the molecular contents of EVs isolated from body fluids.
Biomarkers*
;
Body Fluids
;
Exosomes
;
Extracellular Vesicles*
;
Nucleic Acids
5.Effect of exosome
Journal of Central South University(Medical Sciences) 2021;46(2):183-188
Traumatic brain injury (TBI) is a main cause of death and disability worldwide, posing a serious threat to public health. But currently, the diagnosis and treatments for TBI are still very limited. Exosomes are a group of extracellular vesicles and participate in multiple physiological processes including intercellular communication and substance transport. Non-coding RNAs (ncRNA) are of great abundancy as cargo of exosomes. Previous studies have shown that ncRNAs are involved in several pathophysiological processes of TBI. However, the concrete mechanisms involved in the effects induced by exosome-derived ncRNA remain largely unknown. As an important component of exosomes, ncRNA is of great significance for diagnosis, precise treatment, response evaluation, prognosis prediction, and complication management after TBI.
Brain Injuries, Traumatic/genetics*
;
Cell Communication
;
Exosomes/genetics*
;
Extracellular Vesicles
;
Humans
;
RNA, Untranslated/genetics*
6.Research progress in role of exosomes exosomes in mental disorders.
Jialing WU ; Shansi LI ; Yi ZHANG
Journal of Central South University(Medical Sciences) 2023;48(5):771-781
Exosomes are a class of extracellular vesicles with a structure of lipid bilayer-membrane. In the central nervous system (CNS), exosomes can be secreted from both neurons and glial cells. Exosomes released into the extracellular matrix can freely cross the blood-brain barrier and function as crucial carriers of cellular communication and substance exchange in the CNS. Exosomes play a key role in the pathological process of mental disorders such as schizophrenia, depression, and bipolar disorder, and they have the potential to be used as a targeted carrier of antipsychotic medications. Exosomes are likely to become a new tool in the future to aid in the early prevention, accurate diagnosis, and effective treatment for people with mental disorders.
Humans
;
Exosomes/physiology*
;
Extracellular Vesicles/physiology*
;
Central Nervous System
;
Mental Disorders
;
Blood-Brain Barrier
7.Research progress of exosomes in the diagnosis and treatment of sepsis.
Xin DU ; Hui FENG ; Yuhao JIANG ; Zihao FAN ; Hengheng ZHENG ; Jianjun ZHU
Chinese Critical Care Medicine 2023;35(9):999-1003
Sepsis is a life-threatening organ dysfunction caused by infection that lead to dysregulation of the host response. Sepsis and septic shock with a high mortality threaten human health at present, which are important medical and health problems. Early diagnosis and treatment decision-making for sepsis and septic shock still need to be improved. Exosomes are extracellular vesicles with a diameter of 30-150 nm formed by the fusion of multi-vesicle bodies and cell membranes. Exosomes can effectively transport a variety of bioactive substances such as proteins, lipids, RNA, DNA, and participate in the regulation of inflammatory response, immune response, infection and other pathophysiological processes. In recent years, exosomes have become one of the important methods for the diagnosis and treatment of systemic inflammatory diseases. This article will focus on the basic and clinical research of sepsis, and focus on the research progress of exosomes in the diagnosis and targeted therapy of sepsis.
Humans
;
Shock, Septic/therapy*
;
Exosomes/metabolism*
;
Sepsis/therapy*
;
Extracellular Vesicles/metabolism*
;
RNA/metabolism*
8.Emerging roles of exosomes in oral diseases progression.
Jiayi WANG ; Junjun JING ; Chenchen ZHOU ; Yi FAN
International Journal of Oral Science 2024;16(1):4-4
Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.
Humans
;
Exosomes
;
Quality of Life
;
Extracellular Vesicles
;
Biomarkers
;
Cell Communication
;
Mouth Neoplasms
9.Exosomes as the source of biomarkers of metabolic diseases.
Min Jae LEE ; Dong Ho PARK ; Ju Hee KANG
Annals of Pediatric Endocrinology & Metabolism 2016;21(3):119-125
Exosomes are extracellular vesicles that contain molecules that regulate the metabolic functions of adjacent or remote cells. Recent in vitro, in vivo and clinical studies support the hypothesis that exosomes released from various cell types play roles in the progression of metabolic disorders including type 2 diabetes. Based on this concept and advances in other diseases, the proteins, mRNA, microRNA and lipids in exosomes isolated from biological fluids have been proposed as biomarkers in metabolic disorders. However, several problems with the development of clinically applicable biomarkers have not been resolved. In this review, the biologic functions of exosomes are briefly introduced, and we discuss the technical and practical pros and cons of different methods of exosome isolation for the identification of exosomal biomarkers of metabolic disorders. Standardization of preanalytical variables and isolation of high-purity exosomes from fully characterized biological fluids will be necessary for the identification of useful exosomal biomarkers that can provide insights into the pathogenic mechanisms of complications of metabolic syndrome and of whole-body metabolism.
Biomarkers*
;
Diabetes Mellitus
;
Exosomes*
;
Extracellular Vesicles
;
In Vitro Techniques
;
Metabolic Diseases*
;
Metabolic Syndrome X
;
Metabolism
;
MicroRNAs
;
RNA, Messenger
10.Exosomes as the source of biomarkers of metabolic diseases.
Min Jae LEE ; Dong Ho PARK ; Ju Hee KANG
Annals of Pediatric Endocrinology & Metabolism 2016;21(3):119-125
Exosomes are extracellular vesicles that contain molecules that regulate the metabolic functions of adjacent or remote cells. Recent in vitro, in vivo and clinical studies support the hypothesis that exosomes released from various cell types play roles in the progression of metabolic disorders including type 2 diabetes. Based on this concept and advances in other diseases, the proteins, mRNA, microRNA and lipids in exosomes isolated from biological fluids have been proposed as biomarkers in metabolic disorders. However, several problems with the development of clinically applicable biomarkers have not been resolved. In this review, the biologic functions of exosomes are briefly introduced, and we discuss the technical and practical pros and cons of different methods of exosome isolation for the identification of exosomal biomarkers of metabolic disorders. Standardization of preanalytical variables and isolation of high-purity exosomes from fully characterized biological fluids will be necessary for the identification of useful exosomal biomarkers that can provide insights into the pathogenic mechanisms of complications of metabolic syndrome and of whole-body metabolism.
Biomarkers*
;
Diabetes Mellitus
;
Exosomes*
;
Extracellular Vesicles
;
In Vitro Techniques
;
Metabolic Diseases*
;
Metabolic Syndrome X
;
Metabolism
;
MicroRNAs
;
RNA, Messenger