1.Recombinant tetra-cell adhesion motifs supports adhesion, migration and proliferation of keratinocytes/fibroblasts, and promotes wound healing.
Mi Yeon JUNG ; Narendra THAPA ; Jung Eun KIM ; Jung Duk YANG ; Byung Chae CHO ; In San KIM
Experimental & Molecular Medicine 2007;39(5):663-672
An extracellular matrix protein plays an important role in skin wound healing. In the present study, we engineered a recombinant protein encompassing the 9th and 10th type III domains of fibronectin, and 4th FAS1 domain of beta ig-h3. This recombinant protein, in total, harbors four known-cell adhesion motifs for integrins: Pro-His-Ser-Arg-Asn (PHSRN) and Arg-Gly-Asp (RGD) in 9th and 10th type III domains of fibronectin, respectively, and Glu-Pro-Asp-Ile-Met (EPDIM) and Try-His (YH) in 4th FAS1 domain of big-h3, were designated to tetra-cell adhesion motifs (T-CAM). In vitro studies showed T-CAM supporting adhesion, migration and proliferation of different cell types including keratinocytes and fibroblasts. In an animal model of full-thickness skin wound, T-CAM exhibited excellent wound healing effects, superior to both 4th FAS1 domain of beta ig-h3 or 9th and 10th type III domains of fibronectin. Based on these results, T-CAM can be applied where enhancement of cell adhesion, migration and proliferation are desired, and it could be developed into novel wound healing drug.
Amino Acid Motifs
;
Animals
;
Cell Adhesion/*drug effects
;
Cell Line
;
Cell Movement/*drug effects
;
Cell Proliferation/*drug effects
;
Extracellular Matrix Proteins/chemistry/genetics/pharmacology
;
Fibroblasts/cytology/drug effects/physiology
;
Fibronectins/chemistry/genetics/*pharmacology
;
Humans
;
Keratinocytes/cytology/drug effects/physiology
;
Mice
;
NIH 3T3 Cells
;
Rabbits
;
Recombinant Fusion Proteins/chemistry/genetics/pharmacology
;
Transforming Growth Factor beta/chemistry/genetics/pharmacology
;
Wound Healing/*drug effects/physiology
2.Simvastatin inhibits induction of matrix metalloproteinase-9 in rat alveolar macrophages exposed to cigarette smoke extract.
Sang Eun KIM ; Tran Thi THUY ; Ji Hyun LEE ; Jai Youl RO ; Young An BAE ; Yoon KONG ; Jee Yin AHN ; Dong Soon LEE ; Yeon Mock OH ; Sang Do LEE ; Yun Song LEE
Experimental & Molecular Medicine 2009;41(4):277-287
Matrix metalloproteinase-9 (MMP-9) may play an important role in emphysematous change in chronic obstructive pulmonary disease (COPD), one of the leading causes of mortality and morbidity worldwide. We previously reported that simvastatin, an inhibitor of HMG-CoA reductase, attenuates emphysematous change and MMP-9 induction in the lungs of rats exposed to cigarette smoke. However, it remained uncertain how cigarette smoke induced MMP-9 and how simvastatin inhibited cigarette smoke-induced MMP-9 expression in alveolar macrophages (AMs), a major source of MMP-9 in the lungs of COPD patients. Presently, we examined the related signaling for MMP-9 induction and the inhibitory mechanism of simvastatin on MMP-9 induction in AMs exposed to cigarette smoke extract (CSE). In isolated rat AMs, CSE induced MMP-9 expression and phosphorylation of ERK and Akt. A chemical inhibitor of MEK1/2 or PI3K reduced phosphorylation of ERK or Akt, respectively, and also inhibited CSE-mediated MMP-9 induction. Simvastatin reduced CSE-mediated MMP-9 induction, and simvastatin-mediated inhibition was reversed by farnesyl pyrophosphate (FPP) or geranylgeranyl pyrophosphate (GGPP). Similar to simvastatin, inhibition of FPP transferase or GGPP transferase suppressed CSE-mediated MMP-9 induction. Simvastatin attenuated CSE-mediated activation of RAS and phosphorylation of ERK, Akt, p65, IkappaB, and nuclear AP-1 or NF-kappaB activity. Taken together, these results suggest that simvastatin may inhibit CSE-mediated MMP-9 induction, primarily by blocking prenylation of RAS in the signaling pathways, in which Raf-MEK-ERK, PI3K/Akt, AP-1, and IkappaB-NF-kappaB are involved.
1-Phosphatidylinositol 3-Kinase/metabolism
;
Alkyl and Aryl Transferases/metabolism
;
Animals
;
Anticholesteremic Agents/pharmacology
;
Cells, Cultured
;
Enzyme Inhibitors/metabolism/pharmacology
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Gene Expression Regulation, Enzymologic/*drug effects
;
I-kappa B Kinase/antagonists & inhibitors/metabolism
;
Macrophages, Alveolar/cytology/*drug effects/*enzymology
;
Matrix Metalloproteinase 9/genetics/*metabolism
;
Mitogen-Activated Protein Kinase Kinases/metabolism
;
Polyisoprenyl Phosphates/metabolism
;
Proto-Oncogene Proteins c-akt/metabolism
;
Rats
;
Sesquiterpenes/metabolism
;
Signal Transduction/physiology
;
Simvastatin/*pharmacology
;
Smoke/*adverse effects
;
*Tobacco/adverse effects/chemistry