2.Advances in the research of the biological activities of degradation products of extracellular matrix.
Xu-guo ZHU ; Du-yin JIANG ; Chuan LI ; Guan-ying YU
Chinese Journal of Burns 2013;29(3):308-311
ECM is a supporting structure for stabilizing the location of cells and preserving the structure of tissues. Recently, it has been discovered that ECM and its degradation products may exert profound influences on tissues and cells, such as activities of inflammatory cells and immune cells. Angiogenesis may be stimulated or inhibited by degradation products of ECM. Matrikines, liberated by partial proteolysis of ECM macromolecules, are found to regulate cell functional activities and play a significant role in wound healing or tumor invasion. Post-burn denatured dermal matrix is being studied in burn healing now. The study of post-burn denatured or necrotic dermal matrix should be emphasized in future.
Animals
;
Extracellular Matrix
;
metabolism
;
Humans
;
Inflammation
;
metabolism
;
Wound Healing
3.Decellularized extracellular matrix mediates tissue construction and regeneration.
Chuanqi LIU ; Ming PEI ; Qingfeng LI ; Yuanyuan ZHANG
Frontiers of Medicine 2022;16(1):56-82
Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell-matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.
Cell Differentiation
;
Cell Proliferation
;
Decellularized Extracellular Matrix
;
Extracellular Matrix/metabolism*
;
Humans
;
Mesenchymal Stem Cells
;
Tissue Engineering/methods*
;
Tissue Scaffolds/chemistry*
4.Transforming growth factor-beta and its receptors in scleroderma.
Journal of Zhejiang University. Medical sciences 2009;38(4):415-421
The hallmark of scleroderma is fibrosis by excessive extracellular matrix (ECM) deposition in the skin, lung, and other organs. Increasing evidence suggests that overexpression of transforming growth factor-beta (TGF-beta) and its receptors play a key pathogenic role in the development of tissue fibrosis in scleroderma. TGF-beta is known to induce the expression of ECM proteins in the pathogenesis of fibrosis in systemic sclerosis. Investigations into TGF-beta pathways will suggest new treatment strategies for fibrotic diseases.
Animals
;
Extracellular Matrix
;
metabolism
;
pathology
;
Extracellular Matrix Proteins
;
metabolism
;
Fibroblasts
;
metabolism
;
Fibrosis
;
Humans
;
Receptors, Transforming Growth Factor beta
;
metabolism
;
Scleroderma, Systemic
;
etiology
;
metabolism
;
Transforming Growth Factor beta
;
metabolism
5.Advances in the research of modulation of dermal collagen fibrin assembly by decorin.
Deqing QI ; Yue ZHOU ; Xuanfen ZHANG
Chinese Journal of Burns 2015;31(2):157-159
Formation of dermal collagen fiber is a complicated and sequential process with the progressive assembly of collagen. Collagen monomers form stepped and orderly protofibrils through longitudinal displacement. Subsequently, protofibrils or protofibrils and collagen are bonded by covalent bonds to form orderly lamellar structure of collagen fibers. Then collagen fibers are tightly wound into coarse collagen fiber bundles by covalent crosslinking. Decorin is a multifunctional small leucine-rich proteoglycan. It can prevent the aggregation of protofibrils by binding to the specific site of collagen with its core protein, and adjusting the spacing between the protofibrils with its glycosaminoglycan chain. Thus, by effecting the formation of collagen fibers with regulation of collagen assembly, decorin may help prevent scar formation and even promote regeneration.
Collagen
;
Decorin
;
metabolism
;
Extracellular Matrix
;
Extracellular Matrix Proteins
;
metabolism
;
pharmacology
;
Fibrillar Collagens
;
metabolism
;
ultrastructure
;
Fibrin
;
metabolism
;
Humans
;
Microfibrils
;
metabolism
;
Proteoglycans
;
metabolism
;
pharmacology
8.Hepatic Fibrogenesis.
The Korean Journal of Gastroenterology 2006;48(5):297-305
In acute injury, liver recovers completely without any scarring change or complication. However, large portion of liver is changed into fibrotic state by excessive production of extracellular matrix (ECM) under chronic injury. Excessive production of ECM results in hepatic fibrosis and repeated process of hepatic fibrosis progress into liver cirrhosis. Liver cirrhosis is an irreversible and terminal state of chronic liver disease and one of the major causes of death in Korea. To block the progression to liver cirrhosis, various studies in the field of virology and immunology have been proceeded. Recently, studies on the hepatic fibrogenesis have progressed with the development of molecular biology. Hepatic stellate cells (HSC) play a key role in the pathogenesis of hepatic fibrosis by producing ECM. The degree of hepatic fibrosis depends on the proliferation and activation of HSC and increased net production of collagen. Therefore, inhibition of HSC activation is one of the main ways to block the progression of hepatic fibrosis. Many kinds of factors such as oxidative stress, acetaldehyde, ascorbic acid, transforming growth factor-beta (TGF-beta) and carbon tetrachloride (CCl4) have been reported to activate HSC and stimulate collagen gene expression. Although there are no definite and effective antifibrogenic agents, possible candidates are antioxidants, interferon, retinoids such as beta-carotene, flavonoids, renin-angiotensin system inhibitors and peroxisome proliferator activated receptor-gamma (PPAR-gamma) agonists. We tried to evaluate the charateristics of HSC in order to develop agents that inhibit hepatic fibrogenesis.
Extracellular Matrix/*metabolism
;
Fibrosis
;
Humans
;
Liver/blood supply/metabolism/*pathology
;
Liver Cirrhosis/etiology/genetics/*metabolism
9.Behavior of Fibroblasts on a Porous Hyaluronic Acid Incorporated Collagen Matrix.
Yonsei Medical Journal 2002;43(2):193-202
A hyaluronic acid (HA) incorporated porous collagen matrix was fabricated at -70 degree C by lyophilization. The HA incorporated collagen matrix showed increased pore size in comparison with collagen matrix. Biodegradability and mechanical properties of matrices were controllable by varying the ultraviolet (UV) irradiation time for cross-linking collagen molecules. Addition of HA to collagen matrix did not effect ultimate tensile stress after UV irradiation. HA incorporated collagen matrices demonstrated a higher resistance against the collagenase degradation than collagen matrix. In an in vitro investigation of cellular behavior using dermal fibroblasts on the porous matrix, HA incorporated collagen matrix induced increased dermal fibroblast migration and proliferation in comparison with collagen matrix. These results suggest that the HA incorporated collagen porous matrix assumes to enhance dermal fibroblast adaptation and regenerative potential.
Collagen/*metabolism
;
Extracellular Matrix/*metabolism
;
Fibroblasts/*physiology
;
Human
;
Hyaluronic Acid/*metabolism
;
Porosity
10.A Case of Colonic Stricture Induced by Ulcerative Colitis.
The Korean Journal of Gastroenterology 2006;48(5):295-296
No abstract available.
Extracellular Matrix/*metabolism
;
Fibrosis
;
Humans
;
Liver/blood supply/metabolism/*pathology
;
Liver Cirrhosis/etiology/genetics/*metabolism