1.Analysis of Medication Patterns for Ancient Epidemic Treatment Based on Data Mining
Peipei JIN ; Tongxing WANG ; Liping CHANG ; Bin HOU ; Ningxin HAN ; Xiaoqi WANG ; Zhenhua JIA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):287-294
ObjectiveExploring the formula rules of commonly used traditional Chinese medicines(TCMs) for epidemic treatment from the Qin and Han dynasties to the Qing dynasty through data mining, providing reference for the prevention and control of contemporary epidemics. MethodsThe articles on epidemic treatment in the electronic database of Chinese Medical Code V5.0 were systematically searched, and the contents such as source, dynasty, author, diagnosis, formula name, therapeutic method and efficacy, and composition of medicines from each article that met the inclusion criteria were extracted. Then, an Excel standardized database was established, and Python programs were used for data mining to summarize the frequency of commonly used medicines and perform hierarchical cluster analysis, Pearson correlation analysis, and association rule analysis. ResultsA total of 1 595 formulas were included, involving 558 TCMs. The efficacy of these medicines could be classified into two categories, namely, expeling pathogenic factors and reinforcing healthy Qi. According to the frequency deconstruction analysis, high-frequency medicines were mainly detoxification, Fu-organ dredging, aromatization and promoting blood circulation, followed by the medicines with the effect of treating the lungs, such as clearing the lungs and resolving phlegm, clearing heat and purging the lungs, relieving cough and asthma, and purging the lungs and relieving asthma. And the proportions of acrid-warm herbs and acrid-cold herbs varied in different periods. Hierarchical clustering and correlation analysis both suggested TCMs for expeling pathogenic factors and reinforcing healthy Qi often formed stable combinations with high association degrees. Association rule analysis showed that the core acrid-warm herb was mainly Ephedrae Herba, and the core acrid-cold herb was mainly Forsythiae Fructus, resulting in the core formulas of Maxing Shigantang and Yinqiaosan. ConclusionThroughout history, the prevention and control of epidemics have been based on the principle of "preserving healthy Qi and avoiding toxic Qi", focusing on the treatment of the causes and characteristics of epidemics through detoxification, Fu-organ dredging, and aromatization, emphasizing the use of Rhei Radix et Rhizoma and other herbs to dredge Fu-organ, eliminate toxins and pathogens, and playing the role of actively intervene with symptomatic medication. And based on the external manifestations of the body's struggle between evil and righteousness, diagnose and treatment according to syndrome differentiation was performed.
2.Toxic Components, Toxicity Mechanisms, Toxicity Attenuation Measures, and Evaluation Methods of Renal Injury-inducing Chinese Medicine
Xin HUANG ; Lujin ZHANG ; Mingsan MIAO ; Can WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):295-304
ObjectiveWe reviewed the existing experimental studies about renal injury-inducing Chinese medicine and systematically analyzed the toxicity mechanisms, toxic components, toxicity attenuation measures, and modern evaluation methods of renal injury-inducing Chinese medicine. The results are expected to provide new ideas for the modern research on kidney injury-inducing Chinese medicine, offer new breakthrough points for the toxicity attenuation of Chinese medicine by compatibility and processing, and give insights into the future research of Chinese medicine toxicology on the basis of ensuring the safety and scientific application of Chinese medicine. MethodsThe animal, cell, and clinical studies of kidney injury-inducing Chinese medicine were retrieved from CNKI, Wanfang Data, VIP, PubMed, and Web of Science. The names and toxic components of renal injury-inducing Chinese medicine, renal injury sites, toxicity mechanisms, toxicity attenuation measures, and related evaluation methods were summarized. ResultsThe toxicity mechanisms of kidney injury-inducing Chinese medicine mainly involved oxidative stress, endoplasmic reticulum stress, inflammatory cell infiltration, and organic anion transporters. Processing and compatibility were the main toxicity attenuation measures. The evaluation methods encompassed animal experiments, cell models, network pharmacology, metabolomics, toxicology genomics, and fluorescent probe technology. ConclusionAt present, the toxicological verification of kidney injury-inducing Chinese medicine starts from toxic components and combines various experimental methods, which is more comprehensive and systematic than the previous studies based on only animal experiments. According to the classical theories of traditional Chinese medicine, the toxicity of kidney injury-inducing Chinese medicine is mainly attenuated by decocting in water, steaming, and frying. With the progress of science and technology, new processing methods for toxicity attenuation are emerging, and structural transformation, fermentation, and microwave methods are the key research directions of toxicity attenuation of Chinese medicine in recent years.
3.Effect and Mechanisms of Chinese Medicine and Its Active Ingredients in Enhancing Antibacterial Activities of Antibiotics: A Review
Ling CHEN ; Xueqin JIANG ; Tao YUAN ; Sufang KUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):305-313
With the increasing severity of bacterial antibiotic resistance, finding new ways to overcome this global challenge has become an urgent task. Chinese medicine, with abundant resources, offers potential for discovering diverse bioactive ingredients to enhance antibiotic efficacy and alleviate the crisis of bacterial antibiotic resistance. This review summarizes bacterial resistance mechanisms, prevention strategies, and the roles and mechanisms of Chinese medicine and its active ingredients in enhancing the efficacy of existing antibiotics. Two major resistance mechanisms—bacterial obstruction of antibiotic uptake and weakening of intracellular antibiotic activity—are introduced, with corresponding prevention and control strategies outlined. Based on the regulatory effects of active ingredients from Chinese medicine on bacteria, their mechanisms for enhancing antibiotic efficacy are categorized into two types, including improving the bacterial uptake of antibiotics and reducing the bacterial resistance to antibiotics. The former mainly enhances extracellular antibiotic uptake by regulating membrane permeability, biofilm formation, and metabolic pathways. The latter weakens intracellular antibiotic resistance by inhibiting efflux pumps and bacterial resistance targets. Furthermore, compound formulas of Chinese medicine, characterized by multi-component, multi-target, and multi-pathway interventions, exert similar antimicrobial effects and mechanisms with active ingredients, offering rich resources for developing antibiotic-enhancing applications. Finally, the review highlights the challenges such as insufficient structural research on active ingredients and potential druggability issues in their application for antibiotic enhancement. This will provide insights for advancing the research on Chinese active ingredients in antibiotic therapy and offers novel strategies to combat bacterial antibiotic resistance.
4.Mechanism of Mitochondrial Autophagy and Intervention of Traditional Chinese Medicine in Renal Fibrosis: A Review
Shuqi MIN ; Chenghua ZHANG ; Qiwang HE ; Xinyue ZHANG ; Zhiyi LI ; Meifeng ZHU ; Shenju WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):314-321
With the main pathological features of glomerulosclerosis and interstitial fibrosis, renal fibrosis is a key pathological process causing chronic kidney disease to progress to end-stage disease. As a cellular autophagic process, mitochondrial autophagy plays a crucial role in maintaining mitochondrial mass and functional stability. Mitochondrial dysfunction is considered to be one of the key factors driving the progression of fibrosis. Phosphatase and tension protein homologue (PTEN) induce various signalling pathways such as putative kinase 1/parkin, Nip3-like protein X/Bcl-2 interacting protein 3, and FUN14 structural domain-containing protein 1 to activate mitochondrial autophagy to participate in the regulation of fibrogenic factors, amelioration of oxidative stress, and inhibition of inflammatory response and apoptosis, which in turn effectively slows down the progression of renal fibrosis. Studies have shown that traditional Chinese medicine monomers and compound preparations, including phenolics, terpenoids, ketones, and alkaloids, can regulate mitochondrial autophagy-related signalling pathways and achieve significant clinical efficacy in intervening in the progression of renal fibrosis for the treatment of chronic kidney disease. This paper summarized the mechanism of mitochondrial autophagy and the research progress of traditional Chinese medicine intervention in renal fibrosis to provide new ideas for the study of the mechanism of traditional Chinese medicine in treating renal fibrosis.
5.Paclitaxel Oral Preparations: A Review
Jie GAO ; Shiyang LI ; Jing GUO ; Rongsheng LI ; Zhenyu XUAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):322-330
Paclitaxel, a highly effective natural antitumor drug, has been demonstrated to be efficacious in the treatment of a variety of cancers, including breast cancer, ovarian cancer, and lung cancer. The traditional paclitaxel injections have been observed to present certain issues, including overt adverse reactions and a decline in the quality of life of patients following treatment. This ultimately leads to an inability to meet the comprehensive needs of patients, thereby limiting the clinical applications of the drugs. Compared with injectable administration, the oral administration can avoid the risk of infection present in the invasive route, is conducive to improving patient compliance and quality of life, and reduces healthcare costs, and has a good application prospect. However, paclitaxel has low solubility, poor permeability, and is susceptible to the exocytosis of P-glycoprotein, which presents a significant challenge in the development of its oral preparations. Novel drug delivery technologies can enhance the solubility of paclitaxel and facilitate its controlled release, which is beneficial for the oral absorption and efficacy. The paper reviews the development history of oral preparations of paclitaxel, and summarizes the delivery technologies such as polymer micelles, nanoparticles, nanoemulsions and nanocrystals, and discusses the application mechanisms, advantages and limitations of these technologies and their adaptability in different cancer treatments. Finally, the challenges faced in the development of oral preparations of paclitaxel are summarized, and future research directions are proposed in order to provide new ideas for the development of oral delivery of paclitaxel.
6.Mechanism of Zuoguiwan in Inhibiting Osteoclast Activation Induced by Breast Cancer via Regulating p38 MAPK/ERK Signaling Pathway
Jianjiang FU ; Yinlong MEI ; Junchao MA ; Xiaocui ZHU ; Wei WANG ; Hong LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):1-9
ObjectiveTo investigate the effects of Zuoguiwan on osteoclast activation induced by breast cancer and its mechanism. MethodsTo simulate breast cancer-induced osteoclastic bone metastasis, RAW264.7 cells were cultured in conditioned medium containing 50% supernatant of MDA-MB-231 breast cancer cells. The dosages of Zuoguiwan used in the experiment were sera containing 5% and 10% Zuoguiwan. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect osteoclast activation. Enzyme-linked immunosorbent assay (ELISA) was used to measure Cathepsin K secretion from RAW264.7 cells. Real-time quantitative polymerase chain reaction (PCR) was used to detect the mRNA expression levels of osteocalcin (OCN) and bone sialoprotein (BSP). Immunoprecipitation was employed to detect the interaction between Runt-related transcription factor 2 (Runx2) and core binding factor β subunit (CBF-β). Western blot was used to assess the protein expression of Runx2, phosphorylated Runx2 (p-Runx2), extracellular signal-regulated kinases 1/2 (ERK1/2), p-ERK1/2, p38 mitogen-activated protein kinase (MAPK), p-p38 MAPK, and CBF-β. ResultsCompared with the blank group, the MDA-MB-231 cell supernatant group showed a significant increase in TRAP-positive cell counts and Cathepsin K secretion. Meanwhile, the expression levels of p-Runx2, Runx2-CBF-β interaction, BSP and OCN mRNA, p-p38 MAPK, and p-ERK1/2 proteins were significantly decreased (P<0.01). Compared with the MDA-MB-231 cell supernatant group, Zuoguiwan-containing sera significantly reduced TRAP-positive cell counts and Cathepsin K secretion (P<0.01), significantly increased p-Runx2, BSP and OCN mRNA expression, as well as p-p38 MAPK and p-ERK1/2 protein levels, and promoted the interaction between Runx2 and CBF-β (P<0.01). No significant change in Runx2 expression was observed. Compared to the blank group, the BVD-523 group showed significantly lower expression of p-p38 MAPK and p-ERK1/2 proteins (P<0.01). Compared with the BVD-523 group, both low and high concentration Zuoguiwan-containing sera groups showed significantly higher p-p38 MAPK expression (P<0.01), and the high concentration Zuoguiwan group also exhibited a significant increase in p-ERK1/2 expression (P<0.01), while no statistical difference was found in the low-dose group. ConclusionZuoguiwan inhibits osteoclast activation by inducing phosphorylation of the key transcriptional regulator Runx2 in intra-osteoclast bone formation, and this process is closely associated with the activation of the p38 MAPK/ERK signaling pathway.
7.Mechanism of Shaoyaotang in Modulating MDSCs-related Immunosuppressive Microenvironment in Prevention and Treatment of Colitis-associated Carcinogenesis
Xue CHEN ; Chenglei WANG ; Bingwei YANG ; Haoyu ZHAI ; Ying WU ; Weidong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):10-19
ObjectiveTo explore the mechanism of Shaoyaotang in the prevention and treatment of colitis-associated carcinogenesis (CAC) based on myeloid-derived suppressor cells (MDSCs)-related immunosuppressive microenvironment. MethodsA total of 140 six-week-old SPF FVB male mice were randomly divided into seven groups: Blank group, Shaoyaotang without model group (7.12 g·kg-1), model group, sulfasalazine group (0.52 g·kg-1), Shaoyaotang low-dose group (3.56 g·kg-1), Shaoyaotang medium-dose group (7.12 g·kg-1) and Shaoyaotang high-dose group (14.24 g·kg-1), with 20 mice in each group. The blank control group and the Shaoyaotang without model group received a single intraperitoneal injection of physiological saline (10 mg·kg-1), while the other five groups were given a single intraperitoneal injection of azoxymethane (AOM) (10 mg·kg-1). After 1 week, the mice were given drinking water containing 2% dextran sulfate sodium (DSS) for 1 week, followed by normal drinking water for 2 weeks. This cycle was repeated three times over a total period of 14 weeks to establish the CAC mouse model. Each group was administered gavage once daily for 2 weeks starting on the 14th day of the experiment, followed by three times a week until the end of the experiment. The body weight of the mice was recorded weekly. Mice were sacrificed on the 28th and 98th days of the experiment. After dissection, the colon length, colon weight, spleen weight, tumor size, and tumor number were measured. Hematoxylin and eosin (HE) staining was used to assess the pathological morphology of colon tumor tissue. Flow cytometry was used to detect MDSCs, regulatory T cells (Tregs), CD4+ T cells, CD8+ T cells, and the CD4+/CD8+ T cell ratio in the spleen. Immunohistochemistry was used to detect the expression levels of programmed cell death protein-1 (PD-1), programmed cell death ligand 1 (PD-L1), phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated nuclear factor-κB (p-NF-κB), and hypoxia-inducible factor 1α (HIF-1α) in the colon tissue. ResultsOn day 14, compared with the blank group, the body weight of the model group was significantly reduced (P<0.01), reaching its lowest point on day 28 (23.39 ± 0.95 ) g. On days 28 and 98, compared with the blank group, the colon length in the model group was significantly shortened (P<0.01), the colon index significantly increased (P<0.01), the spleen index significantly increased (P<0.01), and the tumor load significantly increased (P<0.01). HE staining showed that in the model group, tumor cells, a large number of inflammatory cell infiltrates, goblet cell disappearance, and crypt loss were observed. In each dose group of Shaoyaotang, the damage to the colonic mucosa, inflammatory cell infiltration, and crypt structure destruction were alleviated. Compared with the model group, the body weight of mice in each dose group of Shaoyaotang increased. On day 98, the colon length was significantly increased (P<0.01), the colon index significantly decreased (P<0.01), the spleen index significantly decreased (P<0.01), and the tumor burden significantly decreased (P<0.01) in each Shaoyaotang dose group. On days 28 and 98, MDSCs and Tregs in the spleen of the medium- and high-dose Shaoyaotang groups were significantly reduced (P<0.01), while CD4+ T cells and the CD4+/CD8+ T cell ratio were significantly increased (P<0.01). The proportion of CD8+ T cells in the spleen and the expression levels of PD-1 and PD-L1 in the colon tissues of mice in each Shaoyaotang dose group were significantly increased to varying degrees (P<0.05, P<0.01). On days 28 and 98, the expression of p-AMPK-positive cells in the colon tissue of the medium- and high-dose Shaoyaotang groups was significantly increased (P<0.01), while the expression of p-NF-κB and HIF-1α was significantly reduced (P<0.01). ConclusionShaoyaotang can regulate MDSC recruitment and modulate the immune function of T lymphocyte subsets to inhibit the occurrence and development of AOM/DSS-induced CAC in mice. The mechanism may be related to the activation of the AMPK/NF-κB/HIF-1α pathway.
8.Mechanism of Action of Kaixinsan in Ameliorating Alzheimer's Disease
Xiaoming HE ; Xiaotong WANG ; Dongyu MIN ; Xinxin WANG ; Meijia CHENG ; Yongming LIU ; Yetao JU ; Yali YANG ; Changbin YUAN ; Changyang YU ; Li ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):20-29
ObjectiveTo investigate the mechanism of action of Kaixinsan in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and animal experimental validation. MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and the Encyclopedia of Traditional Chinese Medicine(ETCM) databases were used to obtain the active ingredients and targets of Kaixinsan. GeneCards, Online Mendelian Inheritance in Man(OMIM), TTD, PharmGKB, and DrugBank databases were used to obtain the relevant targets of AD. The intersection (common targets) of the active ingredient targets of Kaixinsan and the relevant targets of AD was taken, and the network interaction analysis of the common targets was carried out in the STRING database to construct a protein-protein interaction(PPI) network. The CytoNCA plugin within Cytoscape was used to screen out the core targets, and the Metascape platform was used to perform gene ontology(GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis. The “drug-active ingredient-target” interaction network was constructed with the help of Cytoscape 3.8.2, and AutoDock Vina was used for molecular docking. Scopolamine (SCOP) was utilized for modeling and injected intraperitoneally once daily. Thirty-two male C57/BL6 mice were randomly divided into blank control (CON) group (0.9% NaCl, n=8), model (SCOP) group (3 mg·kg-1·d-1, n=8), positive control group (3 mg·kg-1·d-1 of SCOP+3 mg·kg-1·d-1 of Donepezil, n=8), and Kaixinsan group (3 mg·kg-1·d-1 of SCOP+6.5 g·kg-1·d-1 of Kaixinsan, n=8). Mice in each group were administered with 0.9% NaCl, Kaixinsan, or Donepezil by gavage twice a day for 14 days. Morris water maze experiment was used to observe the learning memory ability of mice. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes in the CA1 area of the mouse hippocampus. Enzyme linked immunosorbent assay(ELISA) was used to determine the serum acetylcholine (ACh) and acetylcholinesterase (AChE) contents of mice. Western blot method was used to detect the protein expression levels of signal transducer and activator of transcription 3(STAT3) and nuclear transcription factor(NF)-κB p65 in the hippocampus of mice. ResultsA total of 73 active ingredients of Kaixinsan were obtained, and 578 potential targets (common targets) of Kaixinsan for the treatment of AD were screened out. Key active ingredients included kaempferol, gijugliflozin, etc.. Potential core targets were STAT3, NF-κB p65, et al. GO functional enrichment analysis obtained 3 124 biological functions, 254 cellular building blocks, and 461 molecular functions. KEGG pathway enrichment obtained 248 pathways, mainly involving cancer-related pathways, TRP pathway, cyclic adenosine monophosphate(cAMP) pathway, and NF-κB pathway. Molecular docking showed that the binding of the key active ingredients to the target targets was more stable. Morris water maze experiment indicated that Kaixinsan could improve the learning memory ability of SCOP-induced mice. HE staining and ELISA results showed that Kaixinsan had an ameliorating effect on central nerve injury in mice. Western blot test indicated that Kaixinsan had a down-regulating effect on the levels of NF-κB p65 phosphorylation and STAT3 phosphorylation in the hippocampal tissue of mice in the SCOP model. ConclusionKaixinsan can improve the cognitive impairment function in SCOP model mice and may reduce hippocampal neuronal damage and thus play a therapeutic role in the treatment of AD by regulating NF-κB p65, STAT3, and other targets involved in the NF-κB signaling pathway.
9.Mechanism of Xielitang Against Ulcerative Colitis in Mice Based on "Intestinal Flora-bile Acid" Axis
Xiaotian WANG ; Yaning BIAO ; Yixin ZHANG ; Jian CHEN ; Ya GAO ; Yufang ZHANG ; Muqing ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):30-38
ObjectiveTo investigate the protective effect of Xielitang on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice and its possible mechanism. MethodsDSS was used to establish UC model. Sixty mice were randomly divided into a normal group, a model group, a sulfasalazine group (0.6 g·kg-1), and low-, medium-, and high-dose Xielitang groups (1.67, 3.34, 6.68 g·kg-1). After treatment for 42 d, the colon length was recorded, and the disease activity index (DAI) score was calculated. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10). Hematoxylin-eosin (HE) staining was used to observe the pathomorphological changes of colon. Western blot was used to detect the protein expression of farnesoid X receptor (FXR), small heterodimer partner (SHP), liver receptor homolog-1 (LRH-1), cholesterol 7α-hydroxylase (CYP7A1), and fibroblast growth factor receptor 4 (FGFR4) in liver and FXR, sodium-dependent bile acid transporter (ASBT), and fibroblast growth factor 15 (FGF15) in ileum. 16S rRNA sequencing was used to analyze the intestinal flora. Moreover, ultra-high performance liquid chromatography–tandem mass spectrometry was used to detect the bile acid content. ResultsCompared with the normal group, the model group showed significantly decreased colon length, IL-10 content, α-diversity index, abundance of Firmicutes and Lactobacillus, and content of deoxycholic acid (DCA) and lithocholic acid (LCA) (P<0.01), significantly increased DAI score, IL-6 and TNF-α content, abundance of Bacteroidetes, and the content of cholic acid (CA), chenodeoxycholic acid (CDCA), and taurocholic acid (TCA) (P<0.05, P<0.01), significantly down-regulated protein expression of FXR, SHP, and FGFR4 in liver and FXR, ASBT, and FGF15 in ileum (P<0.01), and significantly up-regulated protein expression of LRH-1 and CYP7A1 in liver (P<0.01). In addition, the structure of colonic mucosa was destroyed, and inflammatory cells infiltrated in the model group. Compared with the model group, Xielitang could significantly increase the colon length, IL-10 content, α-diversity index, the abundance of Firmicutes and Lactobacillus, and DCA and LCA content (P<0.05, P<0.01), decrease DAI score, abundance of Bacteroidetes, and the content of IL-6, TNF-α, CA, CDCA, and TCA (P<0.01), up-regulate the protein expression of FXR, SHP, and FGFR4 in liver and FXR, ASBT, and FGF15 in ileum (P<0.01), and down-regulate the protein expression of LRH-1 and CYP7A1 in liver (P<0.01). The pathological damage of colonic mucosa was obviously alleviated. ConclusionXielitang protects against UC probably by regulating the "intestinal microbiota-bile acid" axis, regulating intestinal flora imbalance, and maintaining bile acid homeostasis.
10.Mechanism of Modified Si Junzitang and Shashen Maidong Tang in Improving Sensitivity of Cisplatin in EGFR-TKI Resistant Lung Adenocarcinoma Cells Based on Aerobic Glycolysis
Yanping WEN ; Yi JIANG ; Liping SHEN ; Haiwei XIAO ; Xiaofeng YANG ; Surui YUAN ; Lingshuang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):39-46
ObjectiveTo investigate the mechanism of modified Si Junzitang and Shashen Maidong Tang [Yiqi Yangyin Jiedu prescription (YQYYJD)] in enhancing the sensitivity of cisplatin in epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI)-resistant lung adenocarcinoma cells based on aerobic glycolysis. MethodsThe effects of different concentrations of YQYYJD (0, 2, 3, 4, 5, 6, 7, 8 g·L-1) and cisplatin (0, 3, 6, 9, 12, 15, 18, 21, 24, 27 mg·L-1) on the proliferation and activity of PC9/GR cells were detected by the cell counting kit-8 (CCK-8) assay after 24 hours of intervention. The half-maximal inhibitory concentration (IC50) for PC9/GR cells was calculated to determine the concentrations used in subsequent experiments. PC9/GR cells were divided into blank group (complete medium), YQYYJD group (5 g·L-1), cisplatin group (12 mg·L-1), and combined group (YQYYJD 5 g·L-1 + cisplatin 12 mg·L-1). After 24 hours of intervention, cell viability was measured using CCK-8 assay. Cell proliferation was assessed by colony formation assay, and cell migration was evaluated by scratch and Transwell assays. Glucose consumption, lactate production, and adenosine triphosphate (ATP) levels were measured by colorimetric assays. The expression levels of glycolysis-related proteins, including hexokinase 2 (HK2), phosphofructokinase P (PFKP), pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDHA), glucose transporter 1 (GLUT1), and monocarboxylate transporter 4 (MCT4), were determined by Western blot. ResultsBoth YQYYJD and cisplatin inhibited the viability of PC9/GR cells in a concentration-dependent manner. The IC50 of PC9/GR cells for YQYYJD and cisplatin were 5.15 g·L-1 and 12.91 mg·L-1, respectively. In terms of cell proliferation, compared with the blank group, the cell survival rate and the number of colonies formed in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group showed a further significant reduction in cell survival rate and colony formation (P<0.01). In terms of cell migration, compared with the blank group, the cell migration rate and the number of cells passing through the Transwell membrane in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group exhibited a further significant reduction in cell migration rate and the number of cells passing through the Transwell membrane (P<0.01). In terms of glycolysis, compared with the blank group, glucose consumption, lactate production, and ATP levels in the YQYYJD group, cisplatin group, and combined group were significantly decreased (P<0.01). Compared with the YQYYJD and cisplatin groups, the combined group showed a further significant reduction in glucose consumption, lactate production, and ATP levels (P<0.05). Compared with the blank group, the protein expression levels of HK2, PFKP, PKM2, and LDHA in the YQYYJD, cisplatin, and combined groups were significantly decreased (P<0.01). The combined group showed a further significant reduction in the expression levels of these proteins compared with the YQYYJD and cisplatin groups (P<0.01). No significant differences were observed in the protein expression levels of GLUT1 and MCT4 among the groups. ConclusionYQYYJD can synergistically inhibit the proliferation and migration of PC9/GR cells and enhance their sensitivity to cisplatin. The mechanism may be related to the downregulation of the expression of glycolysis-related rate-limiting enzymes, including HK2, PFKP, PKM2, and LDHA, thereby inhibiting glycolysis.

Result Analysis
Print
Save
E-mail