1.Research progress in application characteristics of plant-derived exosome-like nanovesicles in intestinal diseases.
Yuan ZUO ; Jin-Ying ZHANG ; Sheng-Dong XU ; Shuo TIAN ; Ming-San MIAO
China Journal of Chinese Materia Medica 2025;50(14):3868-3877
Inflammatory bowel disease is a chronic, idiopathic, and recurrent gastrointestinal disorder with an unclear etiology and uncertain pathogenesis. Traditional treatment strategies rely on frequent administration of high doses of medication to reduce inflammation, whereas these approaches have limitations and may induce potential complications. Therefore, finding more effective and safe therapeutic drugs and methods is particularly important. Plant-derived exosome-like nanovesicles(PDELNs) are nano-sized vesicles with a lipid bilayer structure that are secreted by plant cells. The bioactive molecules contained within, such as lipids, proteins, and nucleic acids, can serve as information carriers, playing a role in the transmission of information and substances between cells and across species. PDELNs can carry and transfer their own bioactive substances or act as carriers for delivering other active components or drugs. Due to the high biocompatibility, low toxicity, and significant bioactivity, PDELNs have garnered widespread attention. Compared with other exosomes, PDELNs are not destroyed in the gastrointestinal tract when taken orally and can reach the intestines. This unique property makes PDELNs a promising oral nanodrug for treating intestinal diseases, showing great potential in this area. This article reviews recent research literature on PDELNs regarding the physicochemical characteristics, extraction and purification methods, functions, application characteristics and mechanisms in the treatment of intestinal diseases, and use as a carrier for treating intestinal diseases, aiming to provide a reference for the use of PDELNs in the treatment of intestinal diseases.
Humans
;
Exosomes/metabolism*
;
Animals
;
Intestinal Diseases/metabolism*
;
Plants/metabolism*
;
Drug Carriers/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Drug Delivery Systems
;
Nanoparticles/chemistry*
2.Role and Mechanism of Hyaluronic Acid-modified Milk Exosomes in Reversing Pemetrexed Resistance in Lung Adenocarcinoma Cells.
Chinese Journal of Lung Cancer 2025;28(9):658-666
BACKGROUND:
Lung cancer currently ranks first globally in both incidence and mortality. Pemetrexed (PMX) serves as a first-line treatment for lung adenocarcinoma (LUAD), but the patients often develop drug resistance during therapy. Milk exosome (mEXO) have the advantages of low immunogenicity, high tissue affinity, and low cost, and mEXO itself has anti-tumor effects. Hyaluronan (HA) naturally bind to CD44, a receptor which is highly expressed in LUAD tissues. This study aims to construct hyaluronan-modified milk exosome (HA-mEXO) and preliminarily investigate their molecular mechanisms for reversing PMX resistance through cellular experiments.
METHODS:
Exosomes were extracted from milk using high-speed centrifugation, and HA-mEXO was constructed. PMX-resistant A549 and PC-9 cell lines were treated with mEXO and HA-mEXO, respectively. CCK-8 assays, colony formation assays, Transwell assays, and flow cytometry were performed to evaluate proliferation, colony formation, migration, invasion, and apoptosis phenotypes in the treated resistant cell lines. Finally, transcriptomic sequencing, analysis, and cellular functional recovery experiments were conducted to investigate the mechanism by which HA-mEXO reverses PMX resistance in LUAD cells.
RESULTS:
The expression of CD44 in A549 and PC-9 LUAD drug-resistant cell lines was significantly higher than that in parental cells, and the uptake rate of HA-mEXO by drug-resistant cell lines was significantly higher than that of mEXO. Compared to the mEXO group, HA-mEXO-treated A549 and PC-9 resistant cells exhibited significantly reduced half maximal inhibitory concentration (IC50) values for PMX, markedly diminished clonogenic, migratory, and invasive capabilities, and a significantly increased proportion of apoptotic cells. Western blot analysis revealed that, compared to parental cells, A549 and PC-9 drug-resistant cells exhibited downregulated ZNF516 expression and upregulated ABCC5 expression. Immunofluorescence analysis revealed that HA-mEXO treatment downregulated ABCC5 expression in A549 and PC-9 drug-resistant cells compared to the PBS group, whereas co-treatment with HA-mEXO and ZNF516 knockdown showed no significant change in ABCC5 expression.
CONCLUSIONS
HA-mEXO carrying ZNF516 suppress ABCC5 expression, thereby enhancing the sensitivity of A549 and PC-9 LAUD drug-resistant cells to PMX.
Humans
;
Hyaluronic Acid/chemistry*
;
Drug Resistance, Neoplasm/drug effects*
;
Exosomes/chemistry*
;
Adenocarcinoma of Lung/genetics*
;
Pemetrexed/pharmacology*
;
Animals
;
Lung Neoplasms/pathology*
;
Milk/chemistry*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Hyaluronan Receptors/metabolism*
3.Research progress on bone repair biomaterials with the function of recruiting endogenous mesenchymal stem cells.
Junjie ZHAO ; Yuhao ZHAO ; Yanchuan PU ; Xiyu WANG ; Pengfei HUANG ; Zhaokun ZHANG ; Haiyan ZHAO
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(11):1408-1413
OBJECTIVE:
To review the research progress on bone repair biomaterials with the function of recruiting endogenous mesenchymal stem cells (MSCs).
METHODS:
An extensive review of the relevant literature on bone repair biomaterials, particularly those designed to recruit endogenous MSCs, was conducted, encompassing both domestic and international studies from recent years. The construction methods and optimization strategies for these biomaterials were summarized. Additionally, future research directions and focal points concerning this material were proposed.
RESULTS:
With the advancement of tissue engineering technology, bone repair biomaterials have increasingly emerged as an ideal solution for addressing bone defects. MSCs serve as the most critical "seed cells" in bone tissue engineering. Historically, both MSCs and their derived exosomes have been utilized in bone repair biomaterials; however, challenges such as limited sources of MSCs and exosomes, low survival rates, and various other issues have persisted. To address these challenges, researchers are combining growth factors, bioactive peptides, specific aptamers, and other substances with biomaterials to develop constructs that facilitate stem cell recruitment. By optimizing mechanical properties, promoting vascular regeneration, and regulating the microenvironment, it is possible to create effective bone repair biomaterials that enhance stem cell recruitment.
CONCLUSION
In comparison to cytokines, phages, and metal ions, bioactive peptides and aptamers obtained through screening exhibit more specific and targeted recruitment functions. Future development directions for bone repair biomaterials will involve the modification of peptides and aptamers with targeted recruitment capabilities in biological materials, as well as the optimization of the mechanical properties of these materials to enhance vascular regeneration and adjust the microenvironment.
Mesenchymal Stem Cells/metabolism*
;
Biocompatible Materials/chemistry*
;
Tissue Engineering/methods*
;
Humans
;
Bone Regeneration
;
Tissue Scaffolds/chemistry*
;
Animals
;
Bone and Bones
;
Mesenchymal Stem Cell Transplantation/methods*
;
Exosomes/metabolism*
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Osteogenesis
4.Proteomics analysis of Astragalus polysaccharide on TLR4-activated lung cancer cell-derived exosomes.
Kang-Die HU ; Kai-Ge YANG ; Cheddah SOUMIA ; Ming-Yuan WU ; Chao YAN ; Xin-Yan LI ; Yan WANG
China Journal of Chinese Materia Medica 2022;47(21):5908-5915
Astragalus polysaccharide(APS), one of the main active components of Astragali Radix, plays an anti-tumor effect by regulating the inflammatory microenvironment of tumors. Exosomes are small extracellular vesicles with a diameter ranging from 50 to 200 nm and carry several biological components from parental cells such as nucleic acids and proteins. When combined with recipient cells, they play an important role in intercellular communication and immune response. In this study, exosomes released from H460 cells at the inflammatory state or with APS addition activated by Toll-like receptor 4(TLR4) were extracted by ultracentrifugation and characterized by Western blot, transmission electron microscopy, and nanoparticle tracking analysis. The exosomal proteins derived from H460 cells in the three groups were further analyzed by label-free proteomics, and 897, 800, and 911 proteins were identified in the three groups(Con, LPS, and APS groups), 88% of which belonged to the ExoCarta exosome protein database. Difference statistical analysis showed that the expression of 111 proteins was changed in the LPS group and the APS group(P<0.05). The biological information analysis of the differential proteins was carried out. The molecular functions, biological processes, and signaling pathways related to the differential proteins mainly involved viral processes, protein binding, and bacterial invasion of proteasome and epithelial cells. Key differential proteins mainly included plasminogen activator inhibitor-1, laminin α5, laminin α1, and CD44, indicating that tumor cells underwent systemic changes in different states and were reflected in exosomes in the inflammatory microenvironment. The analysis results also suggested that APS might affect the inflammatory microenvironment through the TLR4/MyD88/NF-κB signaling pathway or the regulation of the extracellular matrix. This study is conducive to a better understanding of the mechanism of tumor development in the inflammatory state and the exploration of the anti-inflammatory effect of APS at the exosome level.
Humans
;
Exosomes/metabolism*
;
Proteomics
;
Toll-Like Receptor 4/metabolism*
;
Lipopolysaccharides
;
Astragalus Plant/chemistry*
;
Lung Neoplasms/metabolism*
;
Polysaccharides/metabolism*
;
Tumor Microenvironment
5.Detection of Exogenous γ-Hydroxybutyric Acid in Rat Blood Exosomes.
Zheng-Xiang GAO ; Qi-Zhi LUO ; Liang ZHANG ; Mao-Qing PEI ; Hui-Jun WANG ; Xia YUE
Journal of Forensic Medicine 2022;38(2):212-216
OBJECTIVES:
To find a method to distinguish exogenous gamma-hydroxybutyrate (GHB) from endogenous GHB by establishing ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) based on exosome for quantitative detection of GHB in the rat blood.
METHODS:
Adult male SD rats were divided into 1 h, 5 h, 10 h administration group and control group. After 1 h, 5 h and 10 h of single precursor of GHB gamma-butyrolactone (GBL) intraperitoneal injection in administration groups, 5 mL blood was collected from the abdominal aorta. Meanwhile, the control group was given a same dose of normal saline, and 5 mL blood was collected at 1 h. Among the 5 mL blood, 0.5 mL was directly detected by HPLC-MS after pretreatment, and exosomes were extracted from the remaining blood by differential centrifugation and detected.
RESULTS:
The concentration of GHB in the control group was (87.36±33.48) ng/mL, and the concentration with administration at 1 h, 5 h and 10 h was (110 400.00±1 766.35) ng/mL, (1 479.00±687.01) ng/mL and (133.60±12.17) ng/mL, respectively. The results of exosome detection showed that no peak GHB signal was detected in the control group and the 10 h administration group, and the concentrations of GHB at 1 h and 5 h administration groups were (91.47±33.44) ng/mL and (49.43±7.05) ng/mL, respectively.
CONCLUSIONS
GHB was detected in blood exosome by UPLC-MS, which indicated that exogenous GHB could be detected in plasma exosomes, while endogenous GHB could not be detected, suggesting that this method may be used as a basis to determine whether there is exogenous drug intake.
4-Butyrolactone/chemistry*
;
Animals
;
Chromatography, Liquid
;
Exosomes/chemistry*
;
Hydroxybutyrates/chemistry*
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Sodium Oxybate/analysis*
;
Tandem Mass Spectrometry/methods*

Result Analysis
Print
Save
E-mail