1.P53 gene mutation detection by bioluminometry assay.
Guo-hua ZHOU ; Zhuo-liang GU ; Jie-bing ZHANG
Acta Pharmaceutica Sinica 2002;37(1):41-45
AIMTo develop a simple, fast and inexpensive approach as well as an instrument for detection of gene mutation.
METHODSPyrosequencing based on bioluminometry assay was employed to detect gene mutation. Pyrosequencing is a method of sequencing by synthesis step-by-step using four enzymes, DNA-polymerase, ATP sulfurylase, luciferase and apyrase. The signal was produced by detecting pyrophosphate released during a dNTP incorporation. For mutation detection, a DNA fragment was amplified by PCR at first, followed by a single-stranded DNA preparation. In the second step, a short primer was annealed to the position just before the mutation point. Finally, specific dNTPs were added in terms of the template sequence. The mutation species can be readily determined by the sequence.
RESULTSA new instrument was developed for gene mutation detection by pyrosequencing. To iteratively inject small amount of each dNTP for the sequencing reaction, capillaries were used to connect dNTP reservoirs and the reaction chamber. Each dNTP was delivered by adding a gas pressure on the top of a corresponding dNTP reservoir, by which 0.2 microL of dNTP can be exactly added each time. It was theoretically proved that undesired liquid seep through the capillary did not affect the sequencing reactions in pyrosequencing. In addition, the three possible variants (wildtype, mutant and heterozygote) of a mutant point Cys275Ser in P53 gene exon 8 were determined by pyrosequencing using the instrument. A simple method was also described for rapidly distinguishing the type of a variant.
CONCLUSIONThe developed method is very simple, and the corresponding instrument is inexpensive and easy to operate, which can be used to detect many types of mutation.
Exons ; genetics ; Genes, p53 ; genetics ; Humans ; Luminescent Measurements ; Point Mutation
2.Study on NPM1 gene mutations in patients with primary myelodysplastic syndromes.
Lin LI ; Yue ZHANG ; Xiao-Tang MA ; Lin YANG ; Ze-Feng XU ; Zhi-Jian XIAO
Chinese Journal of Hematology 2010;31(12):809-812
OBJECTIVETo investigate NPM1 gene mutations in patients with primary myelodysplastic syndromes (MDS) and the clinical characteristics of patients with NPM1 mutants.
METHODSGenomic DNA corresponding to exon 12 of NPM1 gene was amplified by polymerase chain reaction (PCR) in 232 patients with primary MDS. Identification of mutants was by direct sequencing and classification of mutation types by sequencing followed by plasmid cloning.
RESULTSNPM1 mutants were found in 9 patients (3.9%). All the mutants were type A. As compared with those with NPM1 wild type, patients with the mutant were of lower ANC \[0.60 (0.12 - 2.91) × 10(9)/L vs 1.02 (0 - 10.23) × 10(9)/L, P = 0.046\], higher blast percent in bone marrow \[0.050 (0 - 0.090) vs 0.025 (0 - 0.190), P = 0.035\], decreased BFU-E \[0 (0 - 0)/10(5) BMMNC vs 6 (0 - 40)/10(5) BMMNC, P = 0.038\] and increased serum vitamin B(12) \[936.40 (373.80 - 2400.00) pmol/L vs 557.85 (17.00 - 3032.10) pmol/L, P = 0.045\] The chromosomal karyotypes of patients with NPM1 mutant were predominantly normal.
CONCLUSIONMDS patients with NPM1 gene mutations have some unique clinical and laboratory features. The results give new hint for the pathogenesis of MDS development and progression.
Exons ; Humans ; Karyotyping ; Mutation ; Myelodysplastic Syndromes ; genetics ; Nuclear Proteins ; genetics
3.Analysis of mutations in exon 7 of phenylalanine hydroxylase gene among children with phenylketonuria in Ningxia, China.
Xin-Mei MAO ; Jiang HE ; Yuan LIU ; Xiao-Qiang LI ; Wu-Zhong YU ; Zhi-Hui GAO ; Jing CAI
Chinese Journal of Contemporary Pediatrics 2014;16(3):259-262
OBJECTIVETo investigate the type and frequency of mutations in exon 7 of phenylalanine hydroxylase (PAH) gene among children with phenylketonuria (PKU) in Ningxia, China and to provide a basis for the genetic diagnosis and prenatal diagnosis of PKU in this region.
METHODSDirect sequencing of PCR product was performed to analyze the sequences of exon 7 and its flanking introns of 146 PAH alleles in 73 children with typical PKU (39 cases of Hui nationality and 34 cases of Han nationality) in Ningxia.
RESULTSSix mutations were detected, including R243Q (14.4%), R241C (6.8%), IVS7+2T→A (2.7%), L255S (0.7%), G247V (0.7%), and G247R (0.7%). The overall frequency of mutations (missense mutation and splice site mutation) in exon 7 was 26.0% (38/146). The detection rate of R241C mutation was significantly higher in children of Hui nationality than in children of Han nationality(10% vs 3%; P<0.05).
CONCLUSIONSIn Ningxia, R243Q mutation in exon 7 of PAH gene is most common in children with PKU, followed by R241C. The frequency of R241C mutation in exon 7 of PAH gene varies between children with PKU of Hui and Han nationality.
China ; ethnology ; Exons ; Humans ; Mutation ; Phenylalanine Hydroxylase ; genetics ; Phenylketonurias ; genetics
4.Identification of two novel variants of the PCCB gene in a pedigree affected with propionic acidemia.
Qigang ZHANG ; Guanglai FAN ; Shu ZHANG ; Yuefang LIU ; Wenjie ZHANG ; Qiong PAN
Chinese Journal of Medical Genetics 2021;38(3):251-254
OBJECTIVE:
To detect pathogenic variants in a pedigree affected with propionic acidemia (PA).
METHODS:
The proband was subjected to high-throughput next-generation sequencing. Suspected variants were validated by Sanger sequencing of his family members. mRNA was extracted from peripheral blood lymphocytes from the proband's father in order to verify the impact of the splicing variant by RT-PCR combined with Sanger sequencing. The pathogenicity of the missense variant was predicted by using PolyPhen-2, Mutation Taster, SIFT, COBALT and HOPE software.
RESULTS:
The proband was found to harbor compound heterozygous variants of the PCCB gene, namely c.184-2A>G and c.733G>A (p.G245S), which were respectively inherited from his father and mother. RT-PCR combined with Sanger sequencing confirmed skipping of exon 2 during transcription. Bioinformatic analysis indicated the c.733G>A (p.G245S) variant to be damaging.
CONCLUSION
The two variants of the PCCB gene probably underlay the disease in this patient. Above findings have enriched the spectrum of PCCB gene variants.
Exons
;
Humans
;
Mutation
;
Mutation, Missense
;
Pedigree
;
Propionic Acidemia/genetics*
5.Serological and molecular studies of a rare A subgroup.
Bin HAN ; Yuli ZHU ; Yahui QU ; Li LIU ; Zhihui FENG
Chinese Journal of Medical Genetics 2021;38(8):807-808
OBJECTIVE:
To determine the genotype of an individual suspected for Aw through DNA sequencing.
METHODS:
Serologic testing was carried out with standard methods. Exons 6 and 7 of the ABO genes were amplified by PCR and subjected to direct sequencing or sequenced after gene cloning.
RESULTS:
Serological testing showed that the forward typing and reverse typing were Aw and A, respectively. DNA sequencing revealed that the individual has carried an Aw allele and an O allele. Haplotype sequencing of each allele has revealed a nt543 variant (543G>C) in the Aw allele.
CONCLUSION
The individual was verified as a rare A subtype, which was previously unreported in mainland China.
ABO Blood-Group System/genetics*
;
Alleles
;
Exons
;
Genotype
;
Humans
;
Phenotype
6.Different Subtypes Caused by c.721C>T Substitution in the Exon 7 of ABO Gene.
Jian-Yu XIAO ; Chen-Chen FENG ; Tai-Xiang LIU ; Li-Li SHI ; Ruo-Yang ZHANG ; Cheng-Yin HUANG ; Qing CHEN
Journal of Experimental Hematology 2021;29(6):1917-1922
OBJECTIVE:
To analyze the different subtypes caused by c.721C>T substitution in the exon 7 of the ABO gene, and to investigate the related molecular mechanism of different antigens expression.
METHODS:
ABO subtypes in 7 samples were identified by standard serological methods. The exons 6, 7, and adjacent intron of ABO gene were amplified by Polymerase Chain Reaction (PCR), and the PCR products were analyzed by direct DNA sequencing and cloning sequencing.
RESULTS:
ABO subtypes phenotypes were A
CONCLUSION
c.721C>T substitution in the ABO gene causes p.Arg241Trp exchange resulting in the decreasing of GTA or GTB activities and weaker antigen expression. O.01.07 is a null allele which cannot form a functional catalytic enzyme has no effect on A
ABO Blood-Group System/genetics*
;
Alleles
;
Exons
;
Genotype
;
Mutation, Missense
7.Analysis of an ABO subtype with a novel variation.
Xinming WU ; Fangyuan JI ; Ni HUO ; Linhai ZHANG ; Liping LIU ; Yong YAO
Chinese Journal of Medical Genetics 2022;39(10):1158-1160
OBJECTIVE:
To analyze the molecular characteristics of a ABO subgroup.
METHODS:
The ABO phenotype was determined with the tube method. Exons of the ABO gene were analyzed by Sanger sequencing, and haplotypes of exons 6 and 7 were analyzed by cloning sequencing.
RESULTS:
By forward typing, the red blood cells showed 3+ agglutination reaction with anti-A and 4+ agglutination with anti-B. A weak reaction with A1 cells and no agglutination reaction with B, O cells by the reverse typing. Sequencing results showed heterozygosity including c.297A>G, c.467C>T, c.526C>G, c.608A>G, c.657C>T, c.703G>A, c.796C>A, c.803G>C, c.930G>A. Cloning sequencing revealed a c.608A>G variant in the A allele compared with the ABO*A1.02.
CONCLUSION
A new variant site of subtype A of c.608G variation has been identified.
ABO Blood-Group System/genetics*
;
Alleles
;
Exons
;
Genotype
;
Heterozygote
;
Phenotype
8.A study of the liver pathology and direct sequencing of all exons of WD gene in a patient with fulminant Wilson disease.
Gang HE ; Xu YANG ; Kai-zhong LUO ; Yong-fang JIANG ; Han-chun CHEN ; Shang-wu LÜ
Chinese Journal of Hepatology 2007;15(9):712-713
Child
;
Exons
;
Hepatolenticular Degeneration
;
genetics
;
pathology
;
Humans
;
Male
;
Sequence Analysis
9.Analysis of a pedigree affected with hereditary coagulation factor XI deficiency due to compound heterozygous variants of F11 gene.
Ting YANG ; Jin ZHU ; Qing YANG ; Jun LIU ; Liping YANG ; Mingshan WANG
Chinese Journal of Medical Genetics 2021;38(3):242-246
OBJECTIVE:
To analyze the clinical phenotype and genetic basis for a Chinese pedigree affected with coagulation factor XI (FXI) deficiency.
METHODS:
Activated partial thromboplastin time (APTT) and other blood coagulation factors, and activities of FXI:C and other relevant coagulation factors for a large Chinese pedigree including 6 patients from 3 generations were determined on a Stago automatic coagulometer. The FXI:Ag was determined with an ELISA method. All exons and flanking regions of the F11 gene were subjected to Sanger sequencing. ClustalX-2.1-win software was used to analyze the conservation of amino acids. Pathogenicity of the variants was predicted with online bioinformatics software including Mutation Taster and Swiss-Pdb Viewer.
RESULTS:
The APTT of the proband was prolonged to 94.2 s. The FXI:C and FXI:Ag were decreased to 1% and 1.3%, respectively. The APTT of her father, mother, son and daughter was 42.1 s, 43.0 s, 42.5 s and 41.0 s, respectively. The FXI:C and FXI:Ag of them were almost halved compared with the normal values. The APTT, FXI:C and FXI:Ag of her husband were all normal. Genetic testing revealed that the proband has carried a heterozygous missense c.1103G>A (p.Gly350Glu) variant in exon 10 and a heterozygous missense c.1556G>A (p.Trp501stop) variant in exon 13 of the F11 gene. The father and daughter were heterozygous for the c.1103G>A variant, whilst the mother and son were heterozygous for the c.1556G>A variant. Both Gly350 and Trp501 are highly conserved among homologous species, and both variants were predicted to be "disease causing" by Mutation Taster. Protein modeling indicated there are two hydrogen bonds between Gly350 and Phe312 in the wild-type, while the p.Gly350Glu variant may add a hydrogen bond to Glu and Tyr351 and create steric resistance between the two, both may affect the structure and stability of protein.
CONCLUSION
The c.1103G>A and c.1556G>A compound heterozygous variants probably underlay the pathogenesis of congenital FXI deficiency in this pedigree.
Exons/genetics*
;
Factor XI/genetics*
;
Factor XI Deficiency/genetics*
;
Female
;
Heterozygote
;
Humans
;
Male
;
Mutation
;
Pedigree
10.Identification of a glycosyltransferase allele associated with Bw subtype and analysis of the protein structure.
Yanling YING ; Xiaozhen HONG ; Jingjing ZHANG ; Xianguo XU ; Ji HE ; Faming ZHU
Chinese Journal of Medical Genetics 2021;38(3):278-281
OBJECTIVE:
To explore the molecular basis for an individual with Bw subtype.
METHODS:
Routine serological reactions were used to determine the surface antigens of erythrocytes and antibodies in serum. PCR-sequence-based typing (PCR-SBT) was used to analyze the coding regions of the ABO gene and erythroid-specific regulatory element in its intron 1. Amplicons for exons 5 to 7 containing the variant site were subjected to TA cloning for the isolation of the haploid and verification of the sequence. The 3D structure of mutant protein was predicted with Pymol software. Changes of amino acid residues and structural stability were also analyzed.
RESULTS:
Serological assay showed that the individual had weakened B antigen and anti-B antibody in his serum. His genotype was determined as ABO*B.01/ABO*O.01.01. Sequencing of the entire coding region of the ABO gene identified an additional heterozygous c.734C/T variant. No variant was found in the erythroid-specific regulatory element of intron 1. Haploid cloning and isolation has obtained an ABO*O.01.01 allele and a ABO*B.01 allele containing a c.734T variant, which has led to substitution of Thr by Ile at position 245 in the functional center of glycosyltransferase. Based on the 3D structure of the protein, the residues binding with the mutation were unchanged, but the bonding distance between the hydrogens was changed with the amino acid substitution. Meanwhile, the connections with water molecules were increased.
CONCLUSION
The c.734C>T variant of the GTB gene can lead to an amino acid substitution in the functional center of the enzyme, which in turn may affect the stability of glycosyltransferase B protein and reduceits enzymatic activity.
ABO Blood-Group System/genetics*
;
Alleles
;
Exons/genetics*
;
Genotype
;
Glycosyltransferases/genetics*
;
Humans
;
Male
;
Phenotype