1.Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet beta cells.
Michael A KALWAT ; Debbie C THURMOND
Experimental & Molecular Medicine 2013;45(8):e37-
The maintenance of whole-body glucose homeostasis is critical for survival, and is controlled by the coordination of multiple organs and endocrine systems. Pancreatic islet beta cells secrete insulin in response to nutrient stimuli, and insulin then travels through the circulation promoting glucose uptake into insulin-responsive tissues such as liver, skeletal muscle and adipose. Many of the genes identified in human genome-wide association studies of diabetic individuals are directly associated with beta cell survival and function, giving credence to the idea that beta-cell dysfunction is central to the development of type 2 diabetes. As such, investigations into the mechanisms by which beta cells sense glucose and secrete insulin in a regulated manner are a major focus of current diabetes research. In particular, recent discoveries of the detailed role and requirements for reorganization/remodeling of filamentous actin (F-actin) in the regulation of insulin release from the beta cell have appeared at the forefront of islet function research, having lapsed in prior years due to technical limitations. Recent advances in live-cell imaging and specialized reagents have revealed localized F-actin remodeling to be a requisite for the normal biphasic pattern of nutrient-stimulated insulin secretion. This review will provide an historical look at the emergent focus on the role of the actin cytoskeleton and its regulation of insulin secretion, leading up to the cutting-edge research in progress in the field today.
Actins/*metabolism
;
Animals
;
Exocytosis/drug effects
;
Glucose/*pharmacology
;
Humans
;
Insulin/metabolism
;
Insulin-Secreting Cells/drug effects/enzymology/*metabolism
;
Signal Transduction/*drug effects
2.Roles of intracellular calcium and monomeric G-proteins in regulating exocytosis of human neutrophils.
Ying ZHU ; Jun-Han WANG ; Jian-Min WU ; Tao XU ; Chun-Guang ZHANG
Acta Physiologica Sinica 2003;55(6):699-704
Neutrophils play a major role in host defense against microbial infection. There are some clues indicate that neutrophils may also play a role in the pathophysiology of the airway obstruction in chronic asthma. We studied the roles of intracellular calcium and GTP gamma S in the regulation of neutrophils exocytosis using pipette perfusion and membrane capacitance measurement technique in whole cell patch clamp configuration. The results showed that the membrane capacitance increase induced by calcium revealed a biphasic process. The first phase occurred when the calcium level was between 0.2-14 micromol/L with a plateau amplitude of 1.23 pF and a calcium EC50 of 1.1 micromol/L. This phase might correspond to the release of the tertiary granules. The second phase occurred when the calcium concentration was between 20-70 micromol/L with a plateau increment of 6.36 pF, the calcium EC50 being about 33 micromol/L. This phase might represent the release of the primary and secondary granules. Intracellular calcium also simultaneously increased the exocytotic rate and the eventual extent in neutrophils. On the other hand, GTP gamma S can increase the exocytotic rate in a dose-dependent manner but had no effect on the eventual extent of membrane capacitance increment (>6 pF) if the cell was stimulated for a long period (>20 min). GTP gamma S (ranging from 20 to 100 micromol/L) induced the neutrophils to release all four types of the granules at very low intracellular calcium level.
Calcium
;
metabolism
;
Cell Degranulation
;
drug effects
;
Exocytosis
;
drug effects
;
GTP-Binding Proteins
;
metabolism
;
physiology
;
Guanosine Triphosphate
;
analogs & derivatives
;
pharmacology
;
Humans
;
Neutrophils
;
metabolism
;
physiology
;
Patch-Clamp Techniques
3.Early phase of amyloid beta42-induced cytotoxicity in neuronal cells is associated with vacuole formation and enhancement of exocytosis.
Meng Lu LIU ; Seong Tshoo HONG
Experimental & Molecular Medicine 2005;37(6):559-566
Amyloid beta (Abeta) neurotoxicity is believed to play a critical role in the pathogenesis of Alzheimer's disease (AD) mainly because of its deposition in AD brain and its neuronal toxicity. However, there have been discrepancies in Abeta-induced cytotoxicity studies, depending on the assay methods. Comparative analysis of Abeta42-induced in vitro cytotoxicity might be useful to elucidate the etiological role of Abeta in the pathogenesis of AD. In this study, MTT, CCK-8, calcein-AM/EthD-1 assays as well as thorough microscopic examinations were comparatively performed after Abeta42 treatment in a neuronal precursor cells (NT2) and a somatic cells (EcR293). Extensive formation of vacuoles was observed at the very early stage of Abeta42 treatment in both cells. Early observation of Abeta42 toxicity as seen in vacuole formation was also shown in MTT assay, but not in CCK-8 and calcein-AM/EthD-1 assays. In addition, Abeta42 treatment dramatically accelerated MTT formazan exocytosis, implying its effect on the extensive formation of cytoplasmic vacuoles. Abeta42 seems to cause indirect inhibition on the intracellular MTT reduction as well as vacuole formation and exocytosis enhancement. Following the acute cellular dysfunction induced by Abeta42, the prolonged treatment of micromolar concentration of Abeta42 resulted in slight inhibition on redox and esterase activity. The early Abeta42-induced vacuolated morphology and later chronic cytotoxic effect in neuronal cell might be linked to the chronic neurodegeneration caused by the accumulation of Abeta42 in AD patients' brain.
Amyloid beta-Protein/*toxicity
;
Animals
;
Cell Death/drug effects
;
Cell Line
;
Dose-Response Relationship, Drug
;
Exocytosis/*drug effects
;
Formazans
;
Neurons/*drug effects/metabolism/*pathology
;
Peptide Fragments/*toxicity
;
Research Support, Non-U.S. Gov't
;
Tetrazolium Salts
;
Time Factors
;
Vacuoles/*drug effects
4.Activation of MAPK Is Required for ROS Generation and Exocytosis in HMC-1 Cells Induced by Trichomonas vaginalis-Derived Secretory Products.
Giimaa NARANTSOGT ; Arim MIN ; Young Hee NAM ; Young Ah LEE ; Kyeong Ah KIM ; Gurbadam AGVAANDARAM ; Temuulen DORJSUREN ; Jamel EL-BENNA ; Myeong Heon SHIN
The Korean Journal of Parasitology 2015;53(5):597-603
Trichomonas vaginalis is a flagellated protozoan parasite that causes vaginitis and cervicitis in women and asymptomatic urethritis and prostatitis in men. Mast cells have been reported to be predominant in vaginal smears and vaginal walls of patients infected with T. vaginalis. Mitogen-activated protein kinase (MAPK), activated by various stimuli, have been shown to regulate the transcriptional activity of various cytokine genes in mast cells. In this study, we investigated whether MAPK is involved in ROS generation and exocytotic degranulation in HMC-1 cells induced by T. vaginalis-derived secretory products (TvSP). We found that TvSP induces the activation of MAPK and NADPH oxidase in HMC-1 cells. Stimulation with TvSP induced phosphorylation of MAPK and p47phox in HMC-1 cells. Stimulation with TvSP also induced up-regulation of CD63, a marker for exocytosis, along the surfaces of human mast cells. Pretreatment with MAPK inhibitors strongly inhibited TvSP-induced ROS generation and exocytotic degranulation. Finally, our results suggest that TvSP induces intracellular ROS generation and exocytotic degranulation in HMC-1 via MAPK signaling.
Cell Degranulation
;
Cell Line
;
*Exocytosis
;
Humans
;
Mast Cells/*drug effects/*metabolism
;
Mitogen-Activated Protein Kinases/*metabolism
;
Reactive Oxygen Species/*metabolism
;
Trichomonas vaginalis/*metabolism
;
Virulence Factors/*metabolism
5.Expression of Ca2+-dependent Synaptotagmin Isoforms in Mouse and Rat Parotid Acinar Cells.
Hae JO ; Hae Mi BYUN ; Jong Hoon KIM ; Min Seuk KIM ; Seung Hyeoi KIM ; Jeong Hee HONG ; Jeong Taeg SEO ; Syng Ill LEE ; Dong Min SHIN ; Heung Kyu SON
Yonsei Medical Journal 2006;47(1):70-77
Synaptotagmin is a Ca2+ sensing protein, which triggers a fusion of synaptic vesicles in neuronal transmission. Little is known regarding the expression of Ca2+ - dependent synaptotagmin isoforms and their contribution to the release of secretory vesicles in mouse and rat parotid acinar cells. We investigated a type of Ca2+ - dependent synaptotagmin and Ca2+ signaling in both rat and mouse parotid acinar cells using RT-PCR, microfluorometry, and amylase assay. Mouse parotid acinar cells exhibited much more sensitive amylase release in response to muscarinic stimulation than did rat parotid acinar cells. However, transient [Ca2+]i increases and Ca2+ influx in response to muscarinic stimulation in both cells were identical, suggesting that the expression or activity of the Ca2+ sensing proteins is different. Seven Ca2+ - dependent synaptotagmins, from 1 to 7, were expressed in the mouse parotid acinar cells. However, in the rat parotid acinar cells, only synaptotagmins 1, 3, 4 and 7 were expressed. These results indicate that the expression of Ca2+ - dependent synaptotagmins may contribute to the release of secretory vesicles in parotid acinar cells.
Synaptotagmins/*metabolism
;
Signal Transduction
;
Rats
;
Protein Isoforms/metabolism
;
Parotid Gland/cytology/*metabolism
;
Muscarinic Agonists/pharmacology
;
Mice
;
Exocytosis/drug effects/physiology
;
Carbachol/pharmacology
;
Calcium/metabolism/*physiology
;
Animals
;
Amylases/secretion
6.Na+i, K+i and Cl-i regulation of exocytosis in guinea-pig antral mucous cells.
Takashi NAKAHARI ; Shoko FUJIWARA ; Chikao SHIMAMOTO
Journal of Korean Medical Science 2000;15(Suppl):S36-S37
Effects of intracellular Na+, K+ and Cl- on Ca(2+)-regulated exocytosis activated by 10 microM acetylcholine (ACh) were studied in guinea-pig antral mucous cells which are permeabilized by nystatin treatment. Ca(2+)-regulated exocytotic events were modulated by [Na+]i, [K+]i and [Cl-]i via mediation of PTX-sensitive G proteins. Increases in [Na+]i and PTX inhibit G protein (G(Na)), which suppressed the exocytosis. Increases in [K+]i caused the exchange of G proteins (from G(Na) to G(K)) to increase, and GK evoked activation of the exocytosis and was inhibited by PTX. Increases in [Cl-]i and PTX inhibit G protein (G(Cl)), which stimulates exocytotic events. Based on these observations, the exocytosis in antral mucous cells were modulated by intracellular ions, concentration of which were increased or decreased by cell volume changes caused by Ach.
Acetylcholine/pharmacology
;
Animal
;
Cell Membrane Permeability/drug effects
;
Exocytosis/physiology*
;
Exocytosis/drug effects
;
Gastric Mucosa/metabolism
;
Gastric Mucosa/cytology
;
Guinea Pigs
;
Hypertonic Solutions/pharmacology
;
Ionophores/pharmacology
;
Nystatin/pharmacology
;
Pertussis Toxins/pharmacology
;
Potassium/pharmacokinetics*
;
Pyloric Antrum/metabolism*
;
Pyloric Antrum/cytology
;
Sodium Chloride/pharmacokinetics*
;
Vasodilator Agents/pharmacology
7.Observation of insulin exocytosis by a pancreatic β cell line with total internal reflection fluorescence microscopy.
Zhao-ying FU ; Ya-ping WANG ; Yu CHEN
Chinese Medical Sciences Journal 2011;26(1):60-63
Animals
;
Exocytosis
;
drug effects
;
physiology
;
Glucose
;
pharmacology
;
Insulin
;
secretion
;
Insulin-Secreting Cells
;
cytology
;
drug effects
;
metabolism
;
Mice
;
Microscopy, Fluorescence
;
methods
;
Potassium
;
pharmacology
;
Recombinant Fusion Proteins
;
genetics
;
metabolism
;
Vesicle-Associated Membrane Protein 2
;
genetics
;
metabolism
8.Autophagic failure promotes the exocytosis and intercellular transfer of alpha-synuclein.
He Jin LEE ; Eun Duk CHO ; Kyung Won LEE ; Jung Hyun KIM ; Ssang Goo CHO ; Seung Jae LEE
Experimental & Molecular Medicine 2013;45(5):e22-
The accumulation of abnormal protein aggregates is a major characteristic of many neurodegenerative disorders, including Parkinson's disease (PD). The intracytoplasmic deposition of alpha-synuclein aggregates and Lewy bodies, often found in PD and other alpha-synucleinopathies, is thought to be linked to inefficient cellular clearance mechanisms, such as the proteasome and autophagy/lysosome pathways. The accumulation of alpha-synuclein aggregates in neuronal cytoplasm causes numerous autonomous changes in neurons. However, it can also affect the neighboring cells through transcellular transmission of the aggregates. Indeed, a progressive spreading of Lewy pathology among brain regions has been hypothesized from autopsy studies. We tested whether inhibition of the autophagy/lysosome pathway in alpha-synuclein-expressing cells would increase the secretion of alpha-synuclein, subsequently affecting the alpha-synuclein deposition in and viability of neighboring cells. Our results demonstrated that autophagic inhibition, via both pharmacological and genetic methods, led to increased exocytosis of alpha-synuclein. In a mixed culture of alpha-synuclein-expressing donor cells with recipient cells, autophagic inhibition resulted in elevated transcellular alpha-synuclein transmission. This increase in protein transmission coincided with elevated apoptotic cell death in the recipient cells. These results suggest that the inefficient clearance of alpha-synuclein aggregates, which can be caused by reduced autophagic activity, leads to elevated alpha-synuclein exocytosis, thereby promoting alpha-synuclein deposition and cell death in neighboring neurons. This finding provides a potential link between autophagic dysfunction and the progressive spread of Lewy pathology.
Adenine/analogs & derivatives/pharmacology
;
Animals
;
*Autophagy/drug effects
;
Cell Line
;
*Exocytosis/drug effects
;
Extracellular Space/*metabolism
;
Humans
;
Mice
;
Mice, Knockout
;
Microtubule-Associated Proteins/deficiency/metabolism
;
Phagosomes/drug effects/metabolism
;
Protein Structure, Quaternary
;
Protein Transport/drug effects
;
alpha-Synuclein/chemistry/*metabolism/secretion/toxicity
9.Protein kinase A inhibition induces EPAC-dependent acrosomal exocytosis in human sperm.
Diana ITZHAKOV ; Yeshayahu NITZAN ; Haim BREITBART
Asian Journal of Andrology 2019;21(4):337-344
To interact with the egg, the spermatozoon must undergo several biochemical and motility modifications in the female reproductive tract, collectively called capacitation. Only capacitated sperm can undergo acrosomal exocytosis, near or on the egg, a process that allows the sperm to penetrate and fertilize the egg. In the present study, we investigated the involvement of cyclic adenosine monophosphate (cAMP)-dependent processes on acrosomal exocytosis. Inhibition of protein kinase A (PKA) at the end of capacitation induced acrosomal exocytosis. This process is cAMP-dependent; however, the addition of relatively high concentration of the membrane-permeable 8-bromo-cAMP (8Br-cAMP, 0.1 mmol l-1) analog induced significant inhibition of the acrosomal exocytosis. The induction of acrosomal exocytosis by PKA inhibition was significantly inhibited by an exchange protein directly activated by cAMP (EPAC) ESI09 inhibitor. The EPAC selective substrate activated AE at relatively low concentrations (0.02-0.1 μmol l-1), whereas higher concentrations (>5 μmol l-1) were inhibitory to the AE induced by PKA inhibition. Inhibition of PKA revealed about 50% increase in intracellular cAMP levels, conditions under which EPAC can be activated to induce the AE. Induction of AE by activating the actin severing-protein, gelsolin, which causes F-actin dispersion, was inhibited by the EPAC inhibitor. The AE induced by PKA inhibition was mediated by phospholipase C activity but not by the Ca2+-channel, CatSper. Thus, inhibition of PKA at the end of the capacitation process induced EPAC/phospholipase C-dependent acrosomal exocytosis. EPAC mediates F-actin depolymerization and/or activation of effectors downstream to F-actin breakdown that lead to acrosomal exocytosis.
8-Bromo Cyclic Adenosine Monophosphate/pharmacology*
;
Acrosome/metabolism*
;
Acrosome Reaction/drug effects*
;
Calcimycin/pharmacology*
;
Cyclic AMP/metabolism*
;
Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors*
;
Exocytosis/drug effects*
;
Guanine Nucleotide Exchange Factors/metabolism*
;
Humans
;
Male
;
Protein Kinase Inhibitors/pharmacology*
;
Signal Transduction/drug effects*
;
Spermatozoa/metabolism*
;
Thapsigargin/pharmacology*
10.Hrs inhibits citron kinase-mediated HIV-1 budding via its FYVE domain.
Jiwei DING ; Lishan SU ; Guangxia GAO
Protein & Cell 2011;2(6):470-476
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a key component of the endosomal sorting complexes required for transport and has been demonstrated to play a regulatory role in endocytosis/exocytosis and the accumulation of internal vesicles in multivesicular bodies. Citron kinase is a Ser/The kinase that we previously reported to enhance human immunodeficiency virus type 1 (HIV-1) virion production. However, the relationship between Hrs and citron kinase in HIV-1 production remains elusive. Here, we report that Hrs interacts with citron kinase via its FYVE domain. Overexpression of Hrs or the FYVE domain resulted in a significant decrease in HIV-1 virion production. Depletion of Hrs by RNA interference in HEK293T cells increased HIV-1 virion production and enhanced the activity of citron kinase. These data suggest that Hrs inhibits HIV-1 production by inhibiting citron kinase-mediated exocytosis.
Down-Regulation
;
Endosomal Sorting Complexes Required for Transport
;
genetics
;
metabolism
;
Endosomes
;
metabolism
;
Exocytosis
;
Gene Expression
;
Gene Silencing
;
drug effects
;
HEK293 Cells
;
HIV Infections
;
genetics
;
metabolism
;
virology
;
HIV-1
;
drug effects
;
genetics
;
growth & development
;
Humans
;
Immunoprecipitation
;
Intracellular Signaling Peptides and Proteins
;
genetics
;
metabolism
;
Microscopy, Fluorescence
;
Phosphoproteins
;
genetics
;
metabolism
;
Plasmids
;
Protein Binding
;
drug effects
;
genetics
;
Protein Interaction Domains and Motifs
;
Protein Structure, Tertiary
;
Protein Transport
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
RNA, Small Interfering
;
pharmacology
;
Transfection
;
Virion
;
drug effects
;
genetics
;
growth & development
;
Virus Release
;
drug effects
;
Virus Replication
;
drug effects