1.Synergistic Antitumor Effect of Everolimus Combined with Gemcitabine on Diffuse Large B-Cell Lymphoma.
Xiu-Qin ZUO ; Chun-Lian TAN ; Xiao-Ming LI ; Tao MA
Journal of Experimental Hematology 2023;31(1):81-88
OBJECTIVE:
To investigate the effects of mTOR inhibitors everolimus (EVE) and gemcitabine (GEM) on the proliferation, apoptosis and cell cycle of diffuse large B-cell lymphoma (DLBCL) cell line U2932, and further explore the molecular mechanisms, so as to provide new ideas and experimental basis for the clinical treatment of DLBCL.
METHODS:
The effect of EVE and GEM on the proliferation of U2932 cells was detected by CCK-8 assay, the IC50 of the two drugs was calculated, and the combination index (CI=) of the two drugs was calculated by CompuSyn software. The effect of EVE and GEM on apoptosis of U2932 cells was detected by flow cytometry with AnnexinV-FITC/PI staining. Flow cytometry with propidium iodide (PI) staining was used to detect the effect of EVE and GEM on the cell cycle of U2932 cells. Western blot assay was used to detect the effects of EVE and GEM on the channel proteins p-mTOR and p-4EBP1, the anti-apoptotic proteins MCL-1 and Survivin, and the cell cycle protein Cyclin D1.
RESULTS:
Both EVE and GEM could significantly inhitbit the proliferation of U2932 cells in a time- and dose-dependent manner (r=0.465, 0.848; 0.555, 0.796). According to the calculation of CompuSyn software, EVE combined with GEM inhibited the proliferation of U2932 cells at 24, 48 and 72 h with CI=<1, which had a synergistic effect. After treated U2932 cells with 10 nmol/L EVE, 250 nmol/L GEM alone and in combination for 48 h, both EVE and GEM induced apoptosis, and the difference was statistically significant compared with the control group (P<0.05). The apoptosis rate was significantly enhanced after EVE in combination with GEM compared with single-agent (P<0.05). Both EVE and GEM alone and in combination significantly increased the proportion of cells in G1 phase compared with the control group (P<0.05). The proportion of cells in G1 phase was significantly increased when the two drugs were combined (P<0.05). The expression of p-mTOR and effector protein p-4EBP1 was significantly downregulated in the EVE combined with GEM group, the expression of anti-apoptotic proteins MCL-1, Survivin and cell cycle protein cyclin D1 was downregulated too (P<0.05).
CONCLUSION
EVE combined with GEM can synergistically inhibit the proliferation of U2932 cells, and the mechanism may be that they can synergistically induce apoptosis by downregulating the expression of MCL-1 and Survivin proteins and block the cell cycle progression by downregulating the expression of Cyclin D1.
Humans
;
Gemcitabine
;
Everolimus/pharmacology*
;
Survivin/pharmacology*
;
Cyclin D1/pharmacology*
;
Myeloid Cell Leukemia Sequence 1 Protein
;
Cell Line, Tumor
;
Cell Proliferation
;
TOR Serine-Threonine Kinases
;
Apoptosis
;
Apoptosis Regulatory Proteins
;
Cell Cycle Proteins
;
Lymphoma, Large B-Cell, Diffuse
2.Everolimus combined with all-trans retinoid acid reverses drug resistance in acute promyelocytic leukemia NB4-R1 cells.
Wei-Chao LIAO ; Ying HE ; Bin-Sheng WANG ; He HUANG
Journal of Zhejiang University. Medical sciences 2015;44(5):525-531
OBJECTIVETo investigate the effect of everolimus(RAD001)combined with all-trans retinoid acid(ATRA) on drug resistance of ATRA-resistance acute promyelocytic leukemia(APL) cell line NB4-R1 and its molecular mechanism.
METHODSAPL NB4-R1 cells were treated with different concentrations of RAD001(1 nmol/L, 10 nmol/L and 100 nmol/L) with ATRA(1μmol/L) for 24, 48 and 72 h, respectively. The differentiation of NB4-R1 cells was analyzed by flow cytometry with CD11b staining and nitro blue tetrozolium(NBT) reduction test. Cell cycle was detected by cell cycle staining kit and apoptosis was detected by flow cytometry with Annexin V/PI staining. Protein expressions of LC-3II, PML-RARα, P-P70S6K and P-4E-BP1 were determined by Western blotting.
RESULTSRAD001 combined with ATRA significantly induced NB4-R1 cells differentiation, but RAD001 or ATRA alone did not enhance NB4-R1 differentiation. The co-treatment induced accumulation of cells in G1 phase and decreased the proportion of cells in S phase. The combined treatment had no effect on cell apoptosis. The differentiation rate of NB4-R1 cells in 100 nmol/L RAD001, 1μmol/L ATRA, RAD001 combined with ATRA and control groups was(2.29±0.57)%,(17.06±2.65)%,(54.47±4.91)% and(2.54±0.53)%, respectively; the proportion of cells in G1 phase was(35.20±11.97)%,(33.54±6.25)%,(53.70±8.73)% and(27.40±6.01)%, respectively; cells apoptosis rate was(2.30±0.14)%,(2.25±0.21)%,(2.40±0.28)% and(1.95±0.07)%, respectively. The combination of RAD001 with ATRA significantly inhibited mTOR signaling downstream proteins P-P70S6K, P-4E-BP1 and enhanced autophagy-related protein LC3-II and Beclin 1. The co-treatment also induced degradation of fusion protein PML-RARα.
CONCLUSIONRAD001 combined with ATRA can induce cell differentiation, inhibit cell cycle, resulting the reverse of drug resistance in NB4-R1 cells, which is associated with increase of autophagy level and degradation of PML-RARα.
Adaptor Proteins, Signal Transducing ; metabolism ; Antineoplastic Agents ; pharmacology ; Apoptosis ; Cell Cycle ; Cell Differentiation ; Cell Line, Tumor ; drug effects ; Drug Resistance, Neoplasm ; Everolimus ; pharmacology ; Humans ; Leukemia, Promyelocytic, Acute ; pathology ; Oncogene Proteins, Fusion ; metabolism ; Phosphoproteins ; metabolism ; Ribosomal Protein S6 Kinases, 70-kDa ; metabolism ; Signal Transduction ; Tretinoin ; metabolism