1.Water soluble tomato concentrate regulates platelet function via the mitogen-activated protein kinase pathway.
Dahye JEONG ; Muhammad IRFAN ; Evelyn SABA ; Sung Dae KIM ; Seung Hyung KIM ; Man Hee RHEE
Korean Journal of Veterinary Research 2016;56(2):67-74
Tomato extract has been shown to exert antiplatelet activity in vitro and to change platelet function ex vivo, but with limitations. In this study, antiplatelet activity of water soluble tomato concentrate (Fruitflow I) and dry water soluble tomato concentrate (Fruitflow II) was investigated using rat platelets. Aggregation was induced by collagen and adenosine diphosphate and granule-secretion, [Ca2+]i, thromboxane B2, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels were examined. The activation of integrin αIIbβ3 and phosphorylation of signaling molecules, including mitogen-activated protein kinase (MAPK) and PI3K/Akt, were investigated by flow cytometry and immunoblotting, respectively. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) were examined. Moreover, in vivo thrombus weight was tested by an arteriovenous shunt model. Fruitflow I and Fruitflow II significantly inhibited agonist induced platelet aggregation, adenosine triphosphate and serotonin release, [Ca2+]i, and thromboxane B2 concentration, while having no effect on cAMP and cGMP levels. Integrin αIIbβ3 activation was also significantly decreased. Moreover, both concentrates reduced phosphorylation of MAPK pathway factors such as ERK, JNK, P38, and PI3K/Akt. In vivo thrombus formation was also inhibited. Taken together, these concentrates have the potential for ethnomedicinal applications to prevent cardiovascular ailments and can be used as functional foods.
Adenosine Diphosphate
;
Adenosine Monophosphate
;
Adenosine Triphosphate
;
Animals
;
Blood Platelets*
;
Cardiovascular Diseases
;
Collagen
;
Flow Cytometry
;
Functional Food
;
Guanosine Monophosphate
;
Immunoblotting
;
In Vitro Techniques
;
Lycopersicon esculentum*
;
Partial Thromboplastin Time
;
Phosphorylation
;
Platelet Aggregation
;
Protein Kinases*
;
Prothrombin Time
;
Rats
;
Serotonin
;
Thrombosis
;
Thromboxane B2
;
Water*
2.Solanum lycopersicum (tomato) ethanol extract elicits anti-inflammatory effects via the nuclear factor kappa B pathway and rescues mice from septic shock.
Evelyn SABA ; Mi Ju OH ; Dongmi KWAK ; Seong Soo ROH ; Hyuk Woo KWON ; Sung Dae KIM ; Man Hee RHEE
Korean Journal of Veterinary Research 2017;57(2):97-104
Solanum lycopersicum, commonly known as tomato, is widely used in raw, cooked, or liquid forms because it contains nutritional compounds that are beneficial for human health, including carotenoids, lycopene, ascorbic acid, vitamins, and minerals. The tomato is perhaps the most widely studied fruit, especially with respect to its cardioprotective effects. In this study, we aimed to identify the anti-inflammatory mechanisms by which the tomato elicits its anti-inflammatory properties. We treated murine macrophage RAW 264.7 cells with a tomato ethanol extract and performed various biochemical assays including nitric oxide inhibition, cell viability, RNA extraction, expression of pro-inflammatory mediators and cytokines, and immunoblotting, as well we assessed cell survival rates. Our results have shown for the first time that a tomato ethanol extract treatment can suppress nitric oxide production in a dose-dependent manner without cytotoxicity. Moreover, it inhibits the expression of pro-inflammatory mediators and cytokines and elicits its anti-inflammatory effects via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. In addition, administration of tomato syrup potently rescued mice from septic shock induced by lipopolysaccharide injection. Collectively, our results elucidate details regarding the anti-inflammatory mechanisms of tomato.
Animals
;
Ascorbic Acid
;
B-Lymphocytes
;
Carotenoids
;
Cell Survival
;
Cytokines
;
Ethanol*
;
Fruit
;
Humans
;
Immunoblotting
;
Lycopersicon esculentum*
;
Macrophages
;
Mice*
;
Minerals
;
Miners
;
NF-kappa B*
;
Nitric Oxide
;
Protein Kinases
;
RAW 264.7 Cells
;
RNA
;
Shock, Septic*
;
Solanum*
;
Vitamins
3.Acetyl Eburicoic Acid from Laetiporus sulphureus var. miniatus Suppresses Inflammation in Murine Macrophage RAW 264.7 Cells.
Evelyn SABA ; Youngmin SON ; Bo Ra JEON ; Seong Eun KIM ; In Kyoung LEE ; Bong Sik YUN ; Man Hee RHEE
Mycobiology 2015;43(2):131-136
The basidiomycete Laetiporus sulphureus var. miniatus belongs to the Aphyllophorales, Polyporaceae, and grows on the needleleaf tree. The fruiting bodies of Laetiporus species are known to produce N-methylated tyramine derivatives, polysaccharides, and various lanostane triterpenoids. As part of our ongoing effort to discover biologically active compounds from wood-rotting fungi, an anti-inflammatory triterpene, LSM-H7, has been isolated from the fruiting body of L. sulphureus var. miniatus and identified as acetyl eburicoic acid. LSM-H7 dose-dependently inhibited the NO production in RAW 264.7 cells without any cytotoxicity at the tested concentrations. Furthermore it suppressed the production of proinflammatory cytokines, mainly inducible nitric oxide synthase, cyclooxygenase-2, interleukin (IL)-1beta, IL-6 and tumor necrosis factor alpha, when compared with glyceraldehyde 3-phosphate dehydrogenase. These data suggest that LSM-H7 is a crucial component for the anti-inflammatory activity of L. sulphureus var. miniatus.
Basidiomycota
;
Cyclooxygenase 2
;
Cytokines
;
Fruit
;
Fungi
;
Glyceraldehyde 3-Phosphate
;
Inflammation*
;
Interleukin-6
;
Interleukins
;
Macrophages*
;
Nitric Oxide
;
Nitric Oxide Synthase Type II
;
Oxidoreductases
;
Polyporaceae
;
Polyporales
;
Polysaccharides
;
Trees
;
Tumor Necrosis Factor-alpha
;
Tyramine
4.Artemisia capillaris Thunb. inhibits melanin synthesis activity via ERK-dependent MITF pathway in B16/F10 melanoma cells
Evelyn SABA ; Mi Ju OH ; Yuan Yee LEE ; Dongmi KWAK ; Suk KIM ; Man Hee RHEE
Korean Journal of Veterinary Research 2018;58(1):1-7
Genus Artemisia occurs as a hardy plant and has a wide range of culinary and medicinal features. In this study, we aimed to describe the melanin inhibitory activity of one Artemisia species, i.e., Artemisia capillaris Thunb. Ethanol extracts of fermented Artemisia capillaris (Art.EtOH.FT) and non-fermented Artemisia capillaris (Art.EtOH.CT) were tested for their ability to inhibit tyrosinase activity and melanin pigmentation. Both extracts showed dose-dependent inhibition against α-melanocyte stimulating hormone-stimulated melanin formation and tyrosinase activity, without cytotoxicity. At 100 µg/mL, both extracts showed greater inhibition than kojic acid, the positive control. Protein expressions of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) at the transcriptional level were determined by using real-time and semi-quantitative polymerase chain reaction. To complete the mechanistic study, presences of upstream elements of MITF, the phosphorylated-extracellular signal-regulated kinase (p-ERK), and phosphorylated-mitogen-activated protein kinase kinase (p-MEK) were confirmed by using western blot analysis. Expressions of p-TYR, p-TRP-1 and p-TRP-2, downstream factors for p-ERK and p-MITF, were translationally inhibited by both extracts. Art.EtOH.FT induced more potent effects than Art.EtOH.CT, especially signal transduction effects. In summary, Artemisia capillaris extracts appear to act as potent hypopigmentation agents.
Artemisia
;
Blotting, Western
;
Ethanol
;
Hypopigmentation
;
Melanins
;
Melanoma
;
Microphthalmia-Associated Transcription Factor
;
Monophenol Monooxygenase
;
Phosphotransferases
;
Pigmentation
;
Plants
;
Polymerase Chain Reaction
;
Protein Kinases
;
Signal Transduction
5.Artemisia capillaris Thunb. inhibits melanin synthesis activity via ERK-dependent MITF pathway in B16/F10 melanoma cells
Evelyn SABA ; Mi Ju OH ; Yuan Yee LEE ; Dongmi KWAK ; Suk KIM ; Man Hee RHEE
Korean Journal of Veterinary Research 2018;58(1):1-7
Genus Artemisia occurs as a hardy plant and has a wide range of culinary and medicinal features. In this study, we aimed to describe the melanin inhibitory activity of one Artemisia species, i.e., Artemisia capillaris Thunb. Ethanol extracts of fermented Artemisia capillaris (Art.EtOH.FT) and non-fermented Artemisia capillaris (Art.EtOH.CT) were tested for their ability to inhibit tyrosinase activity and melanin pigmentation. Both extracts showed dose-dependent inhibition against α-melanocyte stimulating hormone-stimulated melanin formation and tyrosinase activity, without cytotoxicity. At 100 µg/mL, both extracts showed greater inhibition than kojic acid, the positive control. Protein expressions of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) at the transcriptional level were determined by using real-time and semi-quantitative polymerase chain reaction. To complete the mechanistic study, presences of upstream elements of MITF, the phosphorylated-extracellular signal-regulated kinase (p-ERK), and phosphorylated-mitogen-activated protein kinase kinase (p-MEK) were confirmed by using western blot analysis. Expressions of p-TYR, p-TRP-1 and p-TRP-2, downstream factors for p-ERK and p-MITF, were translationally inhibited by both extracts. Art.EtOH.FT induced more potent effects than Art.EtOH.CT, especially signal transduction effects. In summary, Artemisia capillaris extracts appear to act as potent hypopigmentation agents.
6.Innovative use of a commercial product (Biomagic) for odor reduction, harmful bacteria inhibition, and immune enhancement in pig farm
Abdul Wahab AKRAM ; Hae-Yeon CHO ; Evelyn SABA ; Ga-Yeong LEE ; Seung-Chun PARK ; Sung Dae KIM ; Yong Gu HAN ; Man Hee RHEE
Korean Journal of Veterinary Research 2024;64(4):e32-
The global increase in livestock production has correspondingly intensified farm odors due to harmful bacteria, reduced immunity, and disease progression. In this study, we treated feces with Biomagic-Enzyme complex for 4 months to understand the relationship between farm odor, immunity against common viral diseases, immune cytokines, and changes in the microbiota. A gas meter (MultiRAE) was used to measure ammonia (NH3) and hydrogen sulfide (H2S) while odor intensity and offensiveness were characterized by the non-objective scaling method. A complete blood count was performed and plasma was obtained after blood centrifugation at 3,000 rpm for 20 minutes. The cytokine profile was evaluated using commercial kits. Microbial DNA was extracted and purified from fecal samples to analyze the microbiota. Microbial DNA and viral RNA/DNA were obtained from fecal samples and amplified to determine the expression of transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome (PRRS), and porcine circovirus type 2 (PCV2). Our results indicated that Biomagic reduced odor nuisance by decreasing ammonia levels, resulting in faint and fairly offensive odor intensity. After the enzyme treatment, Escherichia coli populations significantly reduced across all 3 farms. In contrast, beneficial Lactobacillus spp. levels remained stable, indicating the enzyme selectively targeted harmful bacteria while preserving beneficial ones. The beneficial Lachnospiraceae, Spirochaetaceae, and Bacteroidaceae were found to be higher in the third month of treatment. TGEV was not detected, while PRRS and non-pathogenic PCV2 showed a positive infection rate. In conclusion, Biomagic reduced ammonia, prevented viral infection from pig farms, and improved gut-beneficial bacteria and microbiota.
7.Innovative use of a commercial product (Biomagic) for odor reduction, harmful bacteria inhibition, and immune enhancement in pig farm
Abdul Wahab AKRAM ; Hae-Yeon CHO ; Evelyn SABA ; Ga-Yeong LEE ; Seung-Chun PARK ; Sung Dae KIM ; Yong Gu HAN ; Man Hee RHEE
Korean Journal of Veterinary Research 2024;64(4):e32-
The global increase in livestock production has correspondingly intensified farm odors due to harmful bacteria, reduced immunity, and disease progression. In this study, we treated feces with Biomagic-Enzyme complex for 4 months to understand the relationship between farm odor, immunity against common viral diseases, immune cytokines, and changes in the microbiota. A gas meter (MultiRAE) was used to measure ammonia (NH3) and hydrogen sulfide (H2S) while odor intensity and offensiveness were characterized by the non-objective scaling method. A complete blood count was performed and plasma was obtained after blood centrifugation at 3,000 rpm for 20 minutes. The cytokine profile was evaluated using commercial kits. Microbial DNA was extracted and purified from fecal samples to analyze the microbiota. Microbial DNA and viral RNA/DNA were obtained from fecal samples and amplified to determine the expression of transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome (PRRS), and porcine circovirus type 2 (PCV2). Our results indicated that Biomagic reduced odor nuisance by decreasing ammonia levels, resulting in faint and fairly offensive odor intensity. After the enzyme treatment, Escherichia coli populations significantly reduced across all 3 farms. In contrast, beneficial Lactobacillus spp. levels remained stable, indicating the enzyme selectively targeted harmful bacteria while preserving beneficial ones. The beneficial Lachnospiraceae, Spirochaetaceae, and Bacteroidaceae were found to be higher in the third month of treatment. TGEV was not detected, while PRRS and non-pathogenic PCV2 showed a positive infection rate. In conclusion, Biomagic reduced ammonia, prevented viral infection from pig farms, and improved gut-beneficial bacteria and microbiota.
8.Innovative use of a commercial product (Biomagic) for odor reduction, harmful bacteria inhibition, and immune enhancement in pig farm
Abdul Wahab AKRAM ; Hae-Yeon CHO ; Evelyn SABA ; Ga-Yeong LEE ; Seung-Chun PARK ; Sung Dae KIM ; Yong Gu HAN ; Man Hee RHEE
Korean Journal of Veterinary Research 2024;64(4):e32-
The global increase in livestock production has correspondingly intensified farm odors due to harmful bacteria, reduced immunity, and disease progression. In this study, we treated feces with Biomagic-Enzyme complex for 4 months to understand the relationship between farm odor, immunity against common viral diseases, immune cytokines, and changes in the microbiota. A gas meter (MultiRAE) was used to measure ammonia (NH3) and hydrogen sulfide (H2S) while odor intensity and offensiveness were characterized by the non-objective scaling method. A complete blood count was performed and plasma was obtained after blood centrifugation at 3,000 rpm for 20 minutes. The cytokine profile was evaluated using commercial kits. Microbial DNA was extracted and purified from fecal samples to analyze the microbiota. Microbial DNA and viral RNA/DNA were obtained from fecal samples and amplified to determine the expression of transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome (PRRS), and porcine circovirus type 2 (PCV2). Our results indicated that Biomagic reduced odor nuisance by decreasing ammonia levels, resulting in faint and fairly offensive odor intensity. After the enzyme treatment, Escherichia coli populations significantly reduced across all 3 farms. In contrast, beneficial Lactobacillus spp. levels remained stable, indicating the enzyme selectively targeted harmful bacteria while preserving beneficial ones. The beneficial Lachnospiraceae, Spirochaetaceae, and Bacteroidaceae were found to be higher in the third month of treatment. TGEV was not detected, while PRRS and non-pathogenic PCV2 showed a positive infection rate. In conclusion, Biomagic reduced ammonia, prevented viral infection from pig farms, and improved gut-beneficial bacteria and microbiota.
9.Innovative use of a commercial product (Biomagic) for odor reduction, harmful bacteria inhibition, and immune enhancement in pig farm
Abdul Wahab AKRAM ; Hae-Yeon CHO ; Evelyn SABA ; Ga-Yeong LEE ; Seung-Chun PARK ; Sung Dae KIM ; Yong Gu HAN ; Man Hee RHEE
Korean Journal of Veterinary Research 2024;64(4):e32-
The global increase in livestock production has correspondingly intensified farm odors due to harmful bacteria, reduced immunity, and disease progression. In this study, we treated feces with Biomagic-Enzyme complex for 4 months to understand the relationship between farm odor, immunity against common viral diseases, immune cytokines, and changes in the microbiota. A gas meter (MultiRAE) was used to measure ammonia (NH3) and hydrogen sulfide (H2S) while odor intensity and offensiveness were characterized by the non-objective scaling method. A complete blood count was performed and plasma was obtained after blood centrifugation at 3,000 rpm for 20 minutes. The cytokine profile was evaluated using commercial kits. Microbial DNA was extracted and purified from fecal samples to analyze the microbiota. Microbial DNA and viral RNA/DNA were obtained from fecal samples and amplified to determine the expression of transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome (PRRS), and porcine circovirus type 2 (PCV2). Our results indicated that Biomagic reduced odor nuisance by decreasing ammonia levels, resulting in faint and fairly offensive odor intensity. After the enzyme treatment, Escherichia coli populations significantly reduced across all 3 farms. In contrast, beneficial Lactobacillus spp. levels remained stable, indicating the enzyme selectively targeted harmful bacteria while preserving beneficial ones. The beneficial Lachnospiraceae, Spirochaetaceae, and Bacteroidaceae were found to be higher in the third month of treatment. TGEV was not detected, while PRRS and non-pathogenic PCV2 showed a positive infection rate. In conclusion, Biomagic reduced ammonia, prevented viral infection from pig farms, and improved gut-beneficial bacteria and microbiota.
10.Innovative use of a commercial product (Biomagic) for odor reduction, harmful bacteria inhibition, and immune enhancement in pig farm
Abdul Wahab AKRAM ; Hae-Yeon CHO ; Evelyn SABA ; Ga-Yeong LEE ; Seung-Chun PARK ; Sung Dae KIM ; Yong Gu HAN ; Man Hee RHEE
Korean Journal of Veterinary Research 2024;64(4):e32-
The global increase in livestock production has correspondingly intensified farm odors due to harmful bacteria, reduced immunity, and disease progression. In this study, we treated feces with Biomagic-Enzyme complex for 4 months to understand the relationship between farm odor, immunity against common viral diseases, immune cytokines, and changes in the microbiota. A gas meter (MultiRAE) was used to measure ammonia (NH3) and hydrogen sulfide (H2S) while odor intensity and offensiveness were characterized by the non-objective scaling method. A complete blood count was performed and plasma was obtained after blood centrifugation at 3,000 rpm for 20 minutes. The cytokine profile was evaluated using commercial kits. Microbial DNA was extracted and purified from fecal samples to analyze the microbiota. Microbial DNA and viral RNA/DNA were obtained from fecal samples and amplified to determine the expression of transmissible gastroenteritis virus (TGEV), porcine reproductive and respiratory syndrome (PRRS), and porcine circovirus type 2 (PCV2). Our results indicated that Biomagic reduced odor nuisance by decreasing ammonia levels, resulting in faint and fairly offensive odor intensity. After the enzyme treatment, Escherichia coli populations significantly reduced across all 3 farms. In contrast, beneficial Lactobacillus spp. levels remained stable, indicating the enzyme selectively targeted harmful bacteria while preserving beneficial ones. The beneficial Lachnospiraceae, Spirochaetaceae, and Bacteroidaceae were found to be higher in the third month of treatment. TGEV was not detected, while PRRS and non-pathogenic PCV2 showed a positive infection rate. In conclusion, Biomagic reduced ammonia, prevented viral infection from pig farms, and improved gut-beneficial bacteria and microbiota.