1.Tanshinone ⅡA activates PI3K/AKT signaling pathway to inhibit the apoptosis of mice cochlear pericytes induced by high glucose.
Tian Feng SHI ; Jin Jing JIA ; Tian Lan HUANG ; Jing Wen MA ; Jun Qiang SI ; Ke Tao MA ; Li LI
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(7):681-689
Objective: To investigate whether tanshinone ⅡA can protect the apoptosis of mice cochlear pericytes induced by high glucose and its specific protective mechanism, so as to provide experimental evidence for the prevention and treatment of diabetic hearing loss. Methods: C57BL/6J male mice were used to prepare type 2 diabetes model, which were divided into normal (NG) group, diabetic (DM) group, diabetic+tanshinone ⅡA (HG+tanshinone ⅡA) group and tanshinone ⅡA group. Each group had 10 animals. Primary cochlear pericytes were divided into NG group, HG group (high glucose 35 mmol/L), HG+tanshinone ⅡA (1, 3, 5 μmol/L) group, HG+Tanshinone ⅡA+LY294002 (PI3K/AKT pathway inhibitor) group, LY294002 group, tanshinone ⅡA group and DMSO group. Auditory brainstem response (ABR) was used to measure hearing threshold. Evans blue was used to detect the permeability of blood labyrinth barrier in each group. TBA methods were used to detect oxidative stress levels in various organs of mice. Morphological changes of stria vascularis were observed by hematoxylin-eosin staining (HE). Evans blue was used to detect the vascular labyrinth barrier permeability in cochlea. The expression of apoptosis protein in stria vascularis pericytes was observed by immunofluorescence. Pericytes apoptosis rate was observed by flow cytometry. DCFH-DA was combined with flow cytometry to detect intracellular ROS content, and Western blot was used to detect the expression of apoptotic proteins (Cleaved-caspase3, Bax), anti-apoptotic proteins (BCL-2) and pathway proteins (PI3K, p-PI3K, AKT, p-AKT). SPSS software was used for statistical analysis. Independent sample t test was performed, and P<0.05 was considered statistically significant. Results: Animal experiments: Tanshinone ⅡA decreased the hearing threshold of DM group [(35.0±3.5) dB SPL vs. (55.3±8.1) dB SPL] (t=4.899, P<0.01), decreased the oxidative stress level in cochlea (t=4.384, P<0.05), improved the structure disorder, atrophy of cochlea vascular lines, vacuole increased phenomenon. Tanshinone ⅡA alleviated the increased permeability of the blood labyrinth barrier [Evans blue leakage (6.84±0.27) AU vs. (8.59±0.85) AU] in the cochlea of DM mice (t=2.770, P<0.05), reversed the apoptotic protein: Caspase3 (t=4.956, P<0.01) and Bax (t=4.388, P<0.05) in cochlear vascularis. Cell experiments: Tanshinone ⅡA decreased intracellular ROS content in a concentration-dependent way (t=3.569, P<0.05; t=4.772, P<0.01; t=7.494, P<0.01); Tanshinone ⅡA decreased apoptosis rate and apoptotic protein, and increased the expression of anti-apoptotic protein, p-PI3K/PI3K and p-AKT/AKT in concentration-dependent manner (all P values<0.05); LY294002 reversed the protective effect of tanshinone ⅡA on pericytes apoptosis (all P values<0.05). Conclusion: Tanshinone ⅡA can inhibit the apoptosis of cochlear pericytes induced by high glucose by reducing oxidative stress level and activating PI3K/AKT signaling pathway under high glucose environment, thus playing a protective role in diabetic hearing loss.
Animals
;
Male
;
Mice
;
Apoptosis
;
bcl-2-Associated X Protein
;
Diabetes Mellitus, Type 2
;
Evans Blue
;
Glucose
;
Hearing Loss
;
Mice, Inbred C57BL
;
Pericytes/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction
2.Effect of different suspension moxibustion methods on syndrome characteristics of rats with rheumatoid arthritis of heat bi syndrome based on "moxibustion can be used for heat syndrome".
Zhong-Ting ZHAO ; Yi-Kun ZHAO ; Jia-Lian CHEN ; Tian-Tian ZHU ; Xing-Ke YAN ; Yan-Feng ZHANG
Chinese Acupuncture & Moxibustion 2023;43(9):1062-1069
OBJECTIVE:
To observe the effects of different suspension moxibustion methods on the syndrome characteristics and inflammatory factors of rats with rheumatoid arthritis (RA) of heat bi syndrome and to prove the concept of "moxibustion can be used for heat syndrome".
METHODS:
Among seventy Wistar rats, 12 rats were randomly selected as a normal group, and the remaining rats were induced by collagen combined with wind, dampness, and heat environmental stimulation to establish the RA model of heat bi syndrome. Forty-eight rats with successful model establishment were further randomly divided into a model group and three moxibustion groups (mild moxibustion group, rotating moxibustion group and sparrow-pecking moxibustion group), with 12 rats in each group. The acupoints "Quchi" (LI 11), "Dazhui" (GV 14) and ashi point were used in all moxibustion groups, with mild moxibustion, rotating moxibustion, and sparrow-pecking moxibustion intervention given respectively, each acupoint was treated with moxibustion for 10 min a day, and 6 days were considered one course of treatment, with a total of three courses. After the intervention, the arthritis index (AI), the Evans blue (EB) extravasated volume in the soft tissue of the right hind paw, and the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-10 in the serum were measured by ELISA in each group. The volume of the bilateral hind paw was measured; the infrared thermal imaging was collected to analyze the temperature of the plantar area of the bilateral foot pads, and the reaction time of plantar heat pain was calculated before and after modeling, as well as after the 1st, 2nd and 3rd courses of interrention. The ankle dorsiflexion angle of the right hind foot was also measured before and after modeling, as well as after the intervention.
RESULTS:
After modeling, compared with the normal group, the rats in the model group had more high-temperature areas in the bilateral hind limbs, abnormal AI score, abnormal bilateral hind paw volume, abnormal temperature of the plantar area of the bilateral foot pads, abnormal foot pain response time, abnormal right hind ankle dorsiflexion angle, abnormal right hind paw soft tissue EB extravasation, and abnormal serum TNF-α and IL-10 levels (P<0.01, P<0.05). After the intervention, compared with the model group, the rats in each moxibustion group had decreased or disappeared high-temperature areas in the bilateral hind limbs, EB extravasated volume in the soft tissue of the right hind paw was reduced (P<0.05), and the right ankle dorsiflexion angle was increased (P<0.05), serum level of TNF-α was reduced, and level of IL-10 increased (P<0.05); the AI scores in the mild moxibustion group and the sparrow-pecking moxibustion group was decreased (P<0.01, P<0.05). After the 1st, 2nd and 3rd courses of intervention, compared with the model group, the bilateral hind paw volume of rats in each moxibustion group was decreased (P<0.05, P<0.01), and plantar heat pain reaction time was increased (P<0.05). After the 2nd course and the 3rd course of intervention, the temperature of the right hind paw pad area was decreased in each moribustion group (P<0.05); after the 3rd courses of intervention, the temperature of the left hind paw pad area was decreased in the mild moxibustion group (P<0.05).
CONCLUSION
Suspension moxibustion could adjust the serum levels of TNF-α and IL-10 to improve the syndrome characteristics of RA rats of heat bi syndrome, such as joint redness, swelling, heat, pain and activity restriction. The effect of mild moxibustion is the most prominent. The findings could provide scientific basis for "moxibustion can be used for heat syndrome".
Animals
;
Rats
;
Arthritis, Rheumatoid/therapy*
;
Evans Blue
;
Hot Temperature
;
Interleukin-10/genetics*
;
Moxibustion
;
Rats, Wistar
;
Tumor Necrosis Factor-alpha/genetics*
3.Schisandrin B Inhibits NLRP3 Inflammasome Pathway and Attenuates Early Brain Injury in Rats of Subarachnoid Hemorrhage.
Song CHEN ; Yi-Hang DING ; Song-Sheng SHI ; Xian-Kun TU
Chinese journal of integrative medicine 2022;28(7):594-602
OBJECTIVE:
To determine whether Schisandrin B (Sch B) attenuates early brain injury (EBI) in rats with subarachnoid hemorrhage (SAH).
METHODS:
Sprague-Dawley rats were divided into sham (sham operation), SAH, SAH+vehicle, and SAH+Sch B groups using a random number table. Rats underwent SAH by endovascular perforation and received Sch B (100 mg/kg) or normal saline after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evan's blue extravasation, and terminal transferase-mediated dUTP nick end-labeling (TUNEL) staining were carried out 24 h after SAH. Immunofluorescent staining was performed to detect the expressions of ionized calcium binding adapter molecule 1 (Iba-1) and myeloperoxidase (MPO) in the rat brain, while the expressions of B-cell lymphoma 2 (Bcl-2), Bax, Caspase-3, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated specklike protein containing the caspase-1 activator domain (ASC), Caspase-1, interleukin (IL)-1β, and IL-18 in the rat brains were detected by Western blot.
RESULTS:
Compared with the SAH group, Sch B significantly improved the neurological function, reduced brain water content, Evan's blue content, and apoptotic cells number in the brain of rats (P<0.05 or P<0.01). Moreover, Sch B decreased SAH-induced expressions of Iba-1 and MPO (P<0.01). SAH caused the elevated expressions of Bax, Caspase-3, NLRP3, ASC, Caspase-1, IL-1β, and IL-18 in the rat brain (P<0.01), all of which were inhibited by Sch B (P<0.01). In addition, Sch B increased the Bcl-2 expression (P<0.01).
CONCLUSION
Sch B attenuated SAH-induced EBI, which might be associated with the inhibition of neuroinflammation, neuronal apoptosis, and the NLRP3 inflammatory signaling pathway.
Animals
;
Apoptosis
;
Brain/pathology*
;
Brain Injuries/pathology*
;
Caspase 3/metabolism*
;
Cyclooctanes
;
Evans Blue
;
Inflammasomes/metabolism*
;
Interleukin-18/metabolism*
;
Lignans
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Polycyclic Compounds
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Subarachnoid Hemorrhage/drug therapy*
;
Water
;
bcl-2-Associated X Protein/metabolism*
4.Astragalus polysaccharide protects against blood-brain barrier damage in MCAO rats by inhibiting P2X7R channel.
Qiao YUAN ; Li Ying XIE ; Chao Jun CHEN
Journal of Southern Medical University 2022;42(11):1705-1711
OBJECTIVE:
To investigate the protective effect of astragalus polysaccharide (APS) against blood-brain barrier in a rat model of middle cerebral artery occlusion (MCAO) and the role of P2X7R channel in the protective mechanism.
METHODS:
In rat microglial cell models of oxygen and glucose deprivation (OGD) or ATP treatment, the formation of blood-brain barrier in vitro was assessed using the leak test, and the effect of APS on the permeability of the blood-brain barrier was determined using LC-MS. In 12 SD rats, MCAO model was established followed by treatment with intraperitoneal injection of normal saline (n= 6) or APS (45 mg/kg, n=6) for 3 consecutive days, with another 6 rats without MCAO receiving saline injections as the control group. The permeability of the blood-brain barrier of the rats was evaluated by determining Evans blue (EB) extravasation, and ATP content in the brain tissue was detected using ELISA; the expression levels of matrix metalloproteinase-9 (MMP-9) and P2X7R in the brain tissue were detected with Western blot.
RESULTS:
In the in vitro cell model of OGD or ATP treatment, APS treatment obviously promoted the repair of blood-brain barrier integrity. In the rat models, the EB content in the brain tissue and the blood-brain barrier permeability increased significantly in MCAO+saline group and MCAO+APS group as compared with those in the control group (P < 0.01). Compared with saline treatment, APS treatment significantly decreased EB content in the brain tissue and improved the blood-brain barrier permeability in the MCAO rats (P < 0.05). MCAO caused a significant reduction of ATP content and obviously increased the expression levels of MMP-9 and P2X7R in the brain tissue of the rats (P < 0.01), and these changes were significantly alleviated after APS treatment (P < 0.01 or 0.05).
CONCLUSION
APS can protect the brain tissue of MCAO rats by stabilizing the internal environment, down-regulating the expression of MMP-9 and improving the permeability of blood-brain barrier under cerebral ischemia and hypoxia, and its mechanism may involve the inhibition of P2X7R channel.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Blood-Brain Barrier
;
Infarction, Middle Cerebral Artery
;
Matrix Metalloproteinase 9
;
Polysaccharides/pharmacology*
;
Evans Blue
;
Oxygen
;
Glucose
;
Adenosine Triphosphate
5.Verification with the utility of an established rapid assessment of brain safety for newly developed vaccines
Laboratory Animal Research 2019;35(4):180-186
In the twenty-first century, high contagious infectious diseases such as SARS (Severe Acute Respiratory Syndrome), MERS (Middle East Respiratory Syndrome), FMD (Foot-and-Mouth Disease) and AI (Avian Influenza) have become very prevalent, causing treat harm to humans and animals in aspect of public health, and economical issues. The critical problem is that newly-reported infectious diseases that humans firstly experience are expected to continue to emerge, and these diseases will be spreading out rapidly. Therefore, rapid and safe supplies of effective vaccines are most pivotal to prevent the rapid prevalent of new infection, but international standards or assessing protocol the safety of urgent vaccines are not established well. In our previous study, since we established a module to assess the brain safety of urgent vaccines, therefore, it is necessary to verify that this established module for assessing brain safety could work effectively in commercially available two vaccines (one killed- and on live-vaccines). We compared the results of Evans blue (EB) assay and qPCR analysis by injection of two kinds of vaccines, PBS and Lipopolysaccharide (LPS) under the condition of the module previously reported. We confirmed that the brain safety test module for urgent vaccine we established is very reproducible. Therefore, it is believed that this vaccine safety testing method can be used to validate brain safety when prompt supply of a newly developed vaccines is needed.
Animals
;
Brain
;
Communicable Diseases
;
Coronavirus Infections
;
Equipment and Supplies
;
Evans Blue
;
Humans
;
Methods
;
Public Health
;
Severe Acute Respiratory Syndrome
;
Vaccines
6.MiR-590 Inhibits Endothelial Cell Apoptosis by Inactivating the TLR4/NF-κB Pathway in Atherosclerosis
Yonsei Medical Journal 2019;60(3):298-307
PURPOSE: Previous study has well documented the anti-apoptotic effects of miR-590 on oxidized low-density lipoprotein (ox-LDL)-treated endothelial cells (ECs). However, the mechanism underlying the anti-apoptotic effects of miR-590 in ox-LDL-treated ECs remains to be further addressed. MATERIALS AND METHODS: ApoE(−/−) mice fed with a high-fat diet (HFD) and human aortic endothelial cells (HAECs) treated with ox-LDL were used as in vivo and in vitro models of atherosclerosis. The expressions of miR-590 and toll-like receptor 4 (TLR4) were detected by quantitative real-time PCR and Western blot, respectively. Atherosclerotic lesion analysis was performed using Evans blue and hematoxylin-eosin staining. Cell proliferation was assessed by MTT assay. Apoptosis was examined using flow cytometry analysis and Western blot analysis of Cleaved poly (ADP-ribose) polymerase (PARP) and Cleaved Caspase-3 levels. The effect of miR-590 on TLR4/nuclear factor kappa B (NF-κB) pathway was evaluated by Western blot. Binding between miR-590 and TLR4 was confirmed by luciferase reporter assay and Western blot. RESULTS: miR-590 was downregulated in the aorta tissues from HFD-fed apoE(−/−) mice and ox-LDL-treated HAECs. miR-590 overexpression inhibited atherosclerotic lesion in HFD-induced apoE(−/−) mice and promoted proliferation and inhibited apoptosis of ox-LDL-treated HAECs. Additionally, TLR4 was identified as a direct target of miR-590 in ox-LDL-treated HAECs. Moreover, anti-miR-590 reversed TLR4 knockdown-mediated promotion of cell proliferation and suppression of apoptosis in ox-LDL-treated HAECs. miR-590 overexpression suppressed the TLR4/NF-κB pathway, and inhibition of the TLR4/NF-κB pathway promoted cell proliferation and impeded apoptosis in ox-LDL-treated HAECs. CONCLUSION: miR-590 promoted proliferation and blocked ox-LDL-induced apoptosis in HAECs through inhibition of the TLR4/NF-κB pathway.
Animals
;
Aorta
;
Apoptosis
;
Atherosclerosis
;
Blotting, Western
;
Caspase 3
;
Cell Proliferation
;
Diet, High-Fat
;
Endothelial Cells
;
Evans Blue
;
Flow Cytometry
;
Humans
;
In Vitro Techniques
;
Lipoproteins
;
Luciferases
;
Mice
;
Real-Time Polymerase Chain Reaction
;
Toll-Like Receptor 4
7.β₂-Adrenoceptor Blockade Deteriorates Systemic Anaphylaxis by Enhancing Hyperpermeability in Anesthetized Mice
Wei YANG ; Toshishige SHIBAMOTO ; Yuhichi KUDA ; Tao ZHANG ; Mamoru TANIDA ; Yasutaka KURATA
Allergy, Asthma & Immunology Research 2018;10(1):52-61
PURPOSE: Patients treated with propranolol, a nonselective β-adrenoceptor antagonist, develop severe anaphylaxis, but the mechanism remains unknown. We determined effects of β₁- and β₂-adrenoceptor antagonists on the anaphylaxis-induced increase in vascular permeability in mice. METHODS: In anesthetized ovalbumin-sensitized C57BL mice, mean arterial blood pressure (MBP) was measured, and Evans blue dye extravasation and hematocrit (Hct) were assessed at 20 minutes after antigen injection. The following pretreatment groups (n=7/group) were studied: (1) sensitized control (non-pretreatment), (2) propranolol, (3) the selective β₂-adrenoceptor antagonist ICI 118,551, (4) the selective β₁-adrenoceptor antagonist atenolol, (5) adrenalectomy, (6) the selective β₂-adrenoceptor agonist terbutaline, and (7) non-sensitized groups. RESULTS: The antigen injection decreased MBP, and increased Hct and vascular permeability in the kidney, lung, mesentery, and intestine, but not in the liver or spleen. Pretreatment with ICI 118,551, propranolol and adrenalectomy, but not atenolol, reduced the survival rate and augmented the increases in Hct and vascular permeability in the kidney, intestine, and lung as compared with the sensitized control group. Pretreatment with terbutaline abolished the antigen-induced alterations. Plasma epinephrine levels were increased significantly in the sensitize control mice. CONCLUSIONS: Blockade of β₂-adrenoceptor can deteriorate systemic anaphylaxis by augmenting hyperpermeability-induced increase in plasma extravasation by inhibiting beneficial effects of epinephrine released from the adrenal glands in anesthetized mice.
Adrenal Glands
;
Adrenalectomy
;
Anaphylaxis
;
Animals
;
Arterial Pressure
;
Atenolol
;
Capillary Permeability
;
Epinephrine
;
Evans Blue
;
Hematocrit
;
Humans
;
Intestines
;
Kidney
;
Liver
;
Lung
;
Mesentery
;
Mice
;
Mice, Inbred C57BL
;
Plasma
;
Propranolol
;
Spleen
;
Survival Rate
;
Terbutaline
8.Angiopoietin-1 and Angiopoietin-2 Expression Imbalance Influence in Early Period After Subarachnoid Hemorrhage.
Hua GU ; Zhen Hai FEI ; Yi Qi WANG ; Jian Guo YANG ; Chao Hui ZHAO ; Yong CAI ; Xing Ming ZHONG
International Neurourology Journal 2016;20(4):288-295
PURPOSE: Microvascular endothelial integrity is important for maintaining the blood-brain barrier (BBB). However, subarachnoid hemorrhage (SAH) disrupts this integrity, making the BBB dysfunctional—an important pathophysiological change after SAH. Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) regulate microvascular permeability by balancing each other’s expression. METHODS: This study investigated the dynamics of Ang-1 and Ang-2 expression after SAH and the protective effect of Ang-1 on BBB functioning using an endovascular puncture model of rat SAH. The Ang-1 and Ang-2 expression in brain tissue was determined by immunohistochemistry. In addition, Western blotting was used to estimate Ang-1 and Ang-2 concentration and to compare them at 6–72 hours post-SAH cortex and hippocampus. Evans blue viability assay was used to evaluate BBB permeability, and neurological testing was implemented to evaluate neurological impairment during SAH. RESULTS: It was found that following SAH, Ang-1 expression decreases and Ang-2 expression increases in the cortex, hippocampus, and microvessels. The Ang-1/Ang-2 ratio decreased as quickly as 6 hours after SAH and reached its lowest 1 day after SAH. Finally, it was found that exogenous Ang-1 reduces SAH-associated BBB leakage and improves neurological function in post-SAH rats. CONCLUSIONS: Our findings suggest that the equilibrium between Ang-1 and Ang-2 is broken in a period shortly after SAH, and the treatment of exogenous Ang-1 injection alleviates neurological dysfunctions through decreasing BBB destruction.
Angiopoietin-1*
;
Angiopoietin-2*
;
Animals
;
Blood-Brain Barrier
;
Blotting, Western
;
Brain
;
Brain Injuries
;
Capillary Permeability
;
Evans Blue
;
Hippocampus
;
Immunohistochemistry
;
Microvessels
;
Permeability
;
Punctures
;
Rats
;
Subarachnoid Hemorrhage*
9.Permeability Parameters Measured with Dynamic Contrast-Enhanced MRI: Correlation with the Extravasation of Evans Blue in a Rat Model of Transient Cerebral Ischemia.
Hyun Seok CHOI ; Sung Soo AHN ; Na Young SHIN ; Jinna KIM ; Jae Hyung KIM ; Jong Eun LEE ; Hye Yeon LEE ; Ji Hoe HEO ; Seung Koo LEE
Korean Journal of Radiology 2015;16(4):791-797
OBJECTIVE: The purpose of this study was to correlate permeability parameters measured with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a clinical 3-tesla scanner with extravasation of Evans blue in a rat model with transient cerebral ischemia. MATERIALS AND METHODS: Sprague-Dawley rats (n = 13) with transient middle cerebral artery occlusion were imaged using a 3-tesla MRI with an 8-channel wrist coil. DCE-MRI was performed 12 hours, 18 hours, and 36 hours after reperfusion. Permeability parameters (K(trans), v(e), and v(p)) from DCE-MRI were calculated. Evans blue was injected after DCE-MRI and extravasation of Evans blue was correlated as a reference with the integrity of the blood-brain barrier. Correlation analysis was performed between permeability parameters and the extravasation of Evans blue. RESULTS: All permeability parameters (K(trans), v(e), and v(p)) showed a linear correlation with extravasation of Evans blue. Among them, K(trans) showed highest values of both the correlation coefficient and the coefficient of determination (0.687 and 0.473 respectively, p < 0.001). CONCLUSION: Permeability parameters obtained by DCE-MRI at 3-T are well-correlated with Evans blue extravasation, and K(trans) shows the strongest correlation among the tested parameters.
Animals
;
Blood-Brain Barrier/pathology
;
Capillary Permeability
;
Contrast Media
;
Disease Models, Animal
;
Evans Blue/analysis
;
Ischemic Attack, Transient/*diagnosis
;
Magnetic Resonance Imaging/instrumentation/*methods
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Stroke/diagnosis
10.Protective effect of jiedu tongluo injection on cerebral edema in rats with lesion of cerebral ischemia/reperfusion.
Li-Fei WU ; Yue XING ; Ya-Lan GUAN ; Zhen-Quan LIU ; Wen-Sheng ZHANG
China Journal of Chinese Materia Medica 2014;39(6):1088-1092
OBJECTIVETo investigate the protective effects of Jiedu Tongluo injection on cerebral edema induced by focal lesion of cerebral ischemia/reperfusion, the hydrous content of brain and the expressions of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin and MMP-9 in rats.
METHODThe model of brain middle cerebral artery ischemia/reperfusion was established by the thread approach. After 24 hours of reperfusion, cerebral edema formation was determined by the hydrous content of brain. The permeability of blood brain barrier was evaluated based on the leakage of Evans blue. Enzyme-linked immunoadsordent assay (ELISA)was used to examine the expression of ICAM-1, VCAM-1, E-selectin. The expression of MMP-9 was measured by immunohistochemistry.
RESULTJDTL, in the dose of 2 mL x kg(-1) and 4 mL x kg(-1), relieved cerebral edema (P < 0.05, P < 0.01), reduced the expressions of ICAM-1, VCAM-land E-selectin and decreased MMP-9 activity (P < 0. 05, P < 0.01) in model rats.
CONCLUSIONJiedu Tongluo injection has a protective effect on rat brain from cerebral edema induced by the injury of focal cerebral ischemia/reperfusion. The mechanism is related to that Jiedu Tongluo injection can reduce the expressions of ICAM-1, VCAM-1 and E-selectin and inhibit of MMP-9 activation in rat brain.
Animals ; Blood-Brain Barrier ; drug effects ; metabolism ; Brain Edema ; etiology ; metabolism ; prevention & control ; Brain Ischemia ; complications ; Drugs, Chinese Herbal ; administration & dosage ; pharmacology ; E-Selectin ; metabolism ; Evans Blue ; metabolism ; Gene Expression Regulation, Enzymologic ; drug effects ; Injections ; Intercellular Adhesion Molecule-1 ; metabolism ; Male ; Matrix Metalloproteinase 9 ; metabolism ; Permeability ; drug effects ; Rats ; Rats, Sprague-Dawley ; Reperfusion Injury ; complications ; Vascular Cell Adhesion Molecule-1 ; metabolism

Result Analysis
Print
Save
E-mail