1.Mathematical Modeling of COVID-19 Transmission and Intervention in South Korea: A Review of Literature
Hyojung LEE ; Sol KIM ; Minyoung JEONG ; Eunseo CHOI ; Hyeonjeong AHN ; Jeehyun LEE
Yonsei Medical Journal 2023;64(1):1-10
South Korea implemented interventions to curb the spread of the novel coronavirus disease 2019 (COVID-19) pandemic with discovery of the first case in early 2020. Mathematical modeling designed to reflect the dynamics of disease transmission has been shown to be an important tool for responding to COVID-19. This study aimed to review publications on the structure, method, and role of mathematical models focusing on COVID-19 transmission dynamics in Korea. In total, 42 papers published between August 7, 2020 and August 21, 2022 were studied and reviewed. This study highlights the construction and utilization of mathematical models to help craft strategies for predicting the course of an epidemic and evaluating the effectiveness of control strategies. Despite the limitations caused by a lack of available epidemiological and surveillance data, modeling studies could contribute to providing scientific evidence for policymaking by simulating various scenarios.
2.Structural Insights into the Interaction of Terpenoids with Streptomyces avermitilis CYP107P2
Eunseo JEONG ; Vitchan KIM ; Changmin KIM ; Yoo-bin LEE ; Donghak KIM
Biomolecules & Therapeutics 2024;32(4):474-480
Streptomyces avermitilis genome includes 33 genes encoding monooxygenation-catalyzing cytochrome P450 enzymes. We investigated the structure of CYP107P2 and its interactions with terpenoid compounds. The recombinant CYP107P2 protein was expressed in Escherichia coli and the purified enzyme exhibited a typical P450 spectrum upon CO-binding in its reduced state. Type-I substrate-binding spectral titrations were observed with various terpenoid compounds, including α-pinene, β-pinene, α-terpinyl acetate, and (+)-3-carene. The calculated binding affinities (Kd) ranged from 15.9 to 50.8 µM. The X-ray crystal structure of CYP107P2 was determined at 1.99 Å resolution, with a well-conserved overall P450 folding conformation. The terpenoid com-pound docking models illustrated that the structural interaction between monoterpenes and CYP107P2, with the distance between heme and terpenes ranging from 3.4 to 5.4 Å, indicates potential substrate binding for P450 enzyme. This study suggests that CYP107P2 is a Streptomyces P450 enzyme capable of catalyzing terpenes as substrates, signifying noteworthy advancements in comprehending a novel P450 enzyme’s involvement in terpene reactions.
3.Serum amyloid A inhibits RANKL-induced osteoclast formation.
Eunseo OH ; Ha Young LEE ; Hak Jung KIM ; Yoo Jung PARK ; Jeong Kon SEO ; Joon Seong PARK ; Yoe Sik BAE
Experimental & Molecular Medicine 2015;47(11):e194-
When mouse bone marrow-derived macrophages were stimulated with serum amyloid A (SAA), which is a major acute-phase protein, there was strong inhibition of osteoclast formation induced by the receptor activator of nuclear factor kappaB ligand. SAA not only markedly blocked the expression of several osteoclast-associated genes (TNF receptor-associated factor 6 and osteoclast-associated receptor) but also strongly induced the expression of negative regulators (MafB and interferon regulatory factor 8). Moreover, SAA decreased c-fms expression on the cell surface via shedding of the c-fms extracellular domain. SAA also restrained the fusion of osteoclast precursors by blocking intracellular ATP release. This inhibitory response of SAA is not mediated by the well-known SAA receptors (formyl peptide receptor 2, Toll-like receptor 2 (TLR2) or TLR4). These findings provide insight into a novel inhibitory role of SAA in osteoclastogenesis and suggest that SAA is an important endogenous modulator that regulates bone homeostasis.
Adenosine Triphosphate/metabolism
;
Animals
;
Cell Differentiation
;
Cell Line
;
Gene Expression Regulation, Developmental
;
Humans
;
Macrophages/*cytology/metabolism
;
Mice
;
Osteoclasts/*cytology/metabolism
;
RANK Ligand/*metabolism
;
Receptor, Macrophage Colony-Stimulating Factor/genetics
;
Receptors, Formyl Peptide/metabolism
;
Serum Amyloid A Protein/*metabolism
;
Toll-Like Receptor 2/metabolism
;
Toll-Like Receptor 4/metabolism