1.Evaluating Paraspinal Back Muscles Using Computed Tomography (CT) and Magnetic Resonance Imaging (MRI): Reliability Analysis and Correlation with Intervertebral Disc Pathology
Eunjin HWANG ; Chermaine Deepa ANTONY ; Jung-Ah CHOI ; Minsu KIM ; Eun Kyoung KHIL ; Il CHOI
Investigative Magnetic Resonance Imaging 2021;25(2):109-117
Purpose:
To investigate the reliability of CT and MRI for quantitative and qualitative analyses of lumbar paraspinal muscle fatty infiltration (PSFI) and correlation of PSFI with intervertebral disc pathology.
Materials and Methods:
Lumbar spine CT and MRI of 36 subjects were reviewed retrospectively. Two observers independently outlined lumbar paraspinal muscles at each mid-intervertebral disc level. Paraspinal muscles on CT and MRI were graded according to the Goutallier grading system (GGS). The area, mean value, and standard deviation (SD) of the Hounsfield unit (HU) were obtained. Intervertebral discs were assessed on axial image of T2WI at each level. Correlations between qualitative and quantitative data and intervertebral disc pathology, age, and sex were evaluated.
Results:
Inter- and intra-observer agreements for results of GGS on MRI were substantial (κ = 0.79) and moderate (κ = 0.59), respectively. Inter- and intra-observer agreements for results of GGS on CT were almost perfect (κ = 0.88) and substantial (κ = 0.66), respectively. Quantitative measurements of HU showed almost perfect inter- and intra-observer reliabilities (κ = 0.82 and κ = 0.99, respectively). There were statistically significant correlations between intervertebral disc pathology and PSFI at L1-2, L2-3, and L4-5 levels on MRI and at L1-2 and L3-4 levels on CT. Age showed significant correlation with results of GGS at all levels on CT and MRI.
Conclusion
This study showed that GGS results and HU measurements could be useful for evaluating PSFI because they showed correlations with intervertebral disc pathology results at certain levels.
2.Evaluating Paraspinal Back Muscles Using Computed Tomography (CT) and Magnetic Resonance Imaging (MRI): Reliability Analysis and Correlation with Intervertebral Disc Pathology
Eunjin HWANG ; Chermaine Deepa ANTONY ; Jung-Ah CHOI ; Minsu KIM ; Eun Kyoung KHIL ; Il CHOI
Investigative Magnetic Resonance Imaging 2021;25(2):109-117
Purpose:
To investigate the reliability of CT and MRI for quantitative and qualitative analyses of lumbar paraspinal muscle fatty infiltration (PSFI) and correlation of PSFI with intervertebral disc pathology.
Materials and Methods:
Lumbar spine CT and MRI of 36 subjects were reviewed retrospectively. Two observers independently outlined lumbar paraspinal muscles at each mid-intervertebral disc level. Paraspinal muscles on CT and MRI were graded according to the Goutallier grading system (GGS). The area, mean value, and standard deviation (SD) of the Hounsfield unit (HU) were obtained. Intervertebral discs were assessed on axial image of T2WI at each level. Correlations between qualitative and quantitative data and intervertebral disc pathology, age, and sex were evaluated.
Results:
Inter- and intra-observer agreements for results of GGS on MRI were substantial (κ = 0.79) and moderate (κ = 0.59), respectively. Inter- and intra-observer agreements for results of GGS on CT were almost perfect (κ = 0.88) and substantial (κ = 0.66), respectively. Quantitative measurements of HU showed almost perfect inter- and intra-observer reliabilities (κ = 0.82 and κ = 0.99, respectively). There were statistically significant correlations between intervertebral disc pathology and PSFI at L1-2, L2-3, and L4-5 levels on MRI and at L1-2 and L3-4 levels on CT. Age showed significant correlation with results of GGS at all levels on CT and MRI.
Conclusion
This study showed that GGS results and HU measurements could be useful for evaluating PSFI because they showed correlations with intervertebral disc pathology results at certain levels.
3.Deep Learning-Assisted Quantitative Measurement of Thoracolumbar Fracture Features on Lateral Radiographs
Woon Tak YUH ; Eun Kyung KHIL ; Yu Sung YOON ; Burnyoung KIM ; Hongjun YOON ; Jihe LIM ; Kyoung Yeon LEE ; Yeong Seo YOO ; Kyeong Deuk AN
Neurospine 2024;21(1):30-43
Objective:
This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise.
Methods:
Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics—compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)—from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT). Training utilized 1,000 nonfractured and 318 fractured radiographs, while validations employed 213 internal and 200 external fractured radiographs. The accuracy of the DL algorithm in quantifying fracture features was evaluated against GT using the intraclass correlation coefficient. Additionally, 4 readers with varying expertise levels, including trainees and an attending spine surgeon, performed measurements with and without DL assistance, and their results were compared to GT and the DL model.
Results:
The DL algorithm demonstrated good to excellent agreement with GT for CR, CA, GA, and SI in both internal (0.860, 0.944, 0.932, and 0.779, respectively) and external (0.836, 0.940, 0.916, and 0.815, respectively) validations. DL-assisted measurements significantly improved most measurement values, particularly for trainees.
Conclusion
The DL algorithm was validated as an accurate tool for quantifying TL fracture features using radiographs. DL-assisted measurement is expected to expedite the diagnostic process and enhance reliability, particularly benefiting less experienced clinicians.
4.Deep Learning-Assisted Quantitative Measurement of Thoracolumbar Fracture Features on Lateral Radiographs
Woon Tak YUH ; Eun Kyung KHIL ; Yu Sung YOON ; Burnyoung KIM ; Hongjun YOON ; Jihe LIM ; Kyoung Yeon LEE ; Yeong Seo YOO ; Kyeong Deuk AN
Neurospine 2024;21(1):30-43
Objective:
This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise.
Methods:
Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics—compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)—from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT). Training utilized 1,000 nonfractured and 318 fractured radiographs, while validations employed 213 internal and 200 external fractured radiographs. The accuracy of the DL algorithm in quantifying fracture features was evaluated against GT using the intraclass correlation coefficient. Additionally, 4 readers with varying expertise levels, including trainees and an attending spine surgeon, performed measurements with and without DL assistance, and their results were compared to GT and the DL model.
Results:
The DL algorithm demonstrated good to excellent agreement with GT for CR, CA, GA, and SI in both internal (0.860, 0.944, 0.932, and 0.779, respectively) and external (0.836, 0.940, 0.916, and 0.815, respectively) validations. DL-assisted measurements significantly improved most measurement values, particularly for trainees.
Conclusion
The DL algorithm was validated as an accurate tool for quantifying TL fracture features using radiographs. DL-assisted measurement is expected to expedite the diagnostic process and enhance reliability, particularly benefiting less experienced clinicians.
5.Deep Learning-Assisted Quantitative Measurement of Thoracolumbar Fracture Features on Lateral Radiographs
Woon Tak YUH ; Eun Kyung KHIL ; Yu Sung YOON ; Burnyoung KIM ; Hongjun YOON ; Jihe LIM ; Kyoung Yeon LEE ; Yeong Seo YOO ; Kyeong Deuk AN
Neurospine 2024;21(1):30-43
Objective:
This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise.
Methods:
Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics—compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)—from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT). Training utilized 1,000 nonfractured and 318 fractured radiographs, while validations employed 213 internal and 200 external fractured radiographs. The accuracy of the DL algorithm in quantifying fracture features was evaluated against GT using the intraclass correlation coefficient. Additionally, 4 readers with varying expertise levels, including trainees and an attending spine surgeon, performed measurements with and without DL assistance, and their results were compared to GT and the DL model.
Results:
The DL algorithm demonstrated good to excellent agreement with GT for CR, CA, GA, and SI in both internal (0.860, 0.944, 0.932, and 0.779, respectively) and external (0.836, 0.940, 0.916, and 0.815, respectively) validations. DL-assisted measurements significantly improved most measurement values, particularly for trainees.
Conclusion
The DL algorithm was validated as an accurate tool for quantifying TL fracture features using radiographs. DL-assisted measurement is expected to expedite the diagnostic process and enhance reliability, particularly benefiting less experienced clinicians.
6.Deep Learning-Assisted Quantitative Measurement of Thoracolumbar Fracture Features on Lateral Radiographs
Woon Tak YUH ; Eun Kyung KHIL ; Yu Sung YOON ; Burnyoung KIM ; Hongjun YOON ; Jihe LIM ; Kyoung Yeon LEE ; Yeong Seo YOO ; Kyeong Deuk AN
Neurospine 2024;21(1):30-43
Objective:
This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise.
Methods:
Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics—compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)—from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT). Training utilized 1,000 nonfractured and 318 fractured radiographs, while validations employed 213 internal and 200 external fractured radiographs. The accuracy of the DL algorithm in quantifying fracture features was evaluated against GT using the intraclass correlation coefficient. Additionally, 4 readers with varying expertise levels, including trainees and an attending spine surgeon, performed measurements with and without DL assistance, and their results were compared to GT and the DL model.
Results:
The DL algorithm demonstrated good to excellent agreement with GT for CR, CA, GA, and SI in both internal (0.860, 0.944, 0.932, and 0.779, respectively) and external (0.836, 0.940, 0.916, and 0.815, respectively) validations. DL-assisted measurements significantly improved most measurement values, particularly for trainees.
Conclusion
The DL algorithm was validated as an accurate tool for quantifying TL fracture features using radiographs. DL-assisted measurement is expected to expedite the diagnostic process and enhance reliability, particularly benefiting less experienced clinicians.
7.Deep Learning-Assisted Quantitative Measurement of Thoracolumbar Fracture Features on Lateral Radiographs
Woon Tak YUH ; Eun Kyung KHIL ; Yu Sung YOON ; Burnyoung KIM ; Hongjun YOON ; Jihe LIM ; Kyoung Yeon LEE ; Yeong Seo YOO ; Kyeong Deuk AN
Neurospine 2024;21(1):30-43
Objective:
This study aimed to develop and validate a deep learning (DL) algorithm for the quantitative measurement of thoracolumbar (TL) fracture features, and to evaluate its efficacy across varying levels of clinical expertise.
Methods:
Using the pretrained Mask Region-Based Convolutional Neural Networks model, originally developed for vertebral body segmentation and fracture detection, we fine-tuned the model and added a new module for measuring fracture metrics—compression rate (CR), Cobb angle (CA), Gardner angle (GA), and sagittal index (SI)—from lumbar spine lateral radiographs. These metrics were derived from six-point labeling by 3 radiologists, forming the ground truth (GT). Training utilized 1,000 nonfractured and 318 fractured radiographs, while validations employed 213 internal and 200 external fractured radiographs. The accuracy of the DL algorithm in quantifying fracture features was evaluated against GT using the intraclass correlation coefficient. Additionally, 4 readers with varying expertise levels, including trainees and an attending spine surgeon, performed measurements with and without DL assistance, and their results were compared to GT and the DL model.
Results:
The DL algorithm demonstrated good to excellent agreement with GT for CR, CA, GA, and SI in both internal (0.860, 0.944, 0.932, and 0.779, respectively) and external (0.836, 0.940, 0.916, and 0.815, respectively) validations. DL-assisted measurements significantly improved most measurement values, particularly for trainees.
Conclusion
The DL algorithm was validated as an accurate tool for quantifying TL fracture features using radiographs. DL-assisted measurement is expected to expedite the diagnostic process and enhance reliability, particularly benefiting less experienced clinicians.