1.Diagnostic Performance of a New Convolutional Neural Network Algorithm for Detecting Developmental Dysplasia of the Hip on Anteroposterior Radiographs
Hyoung Suk PARK ; Kiwan JEON ; Yeon Jin CHO ; Se Woo KIM ; Seul Bi LEE ; Gayoung CHOI ; Seunghyun LEE ; Young Hun CHOI ; Jung-Eun CHEON ; Woo Sun KIM ; Young Jin RYU ; Jae-Yeon HWANG
Korean Journal of Radiology 2021;22(4):612-623
Objective:
To evaluate the diagnostic performance of a deep learning algorithm for the automated detection of developmental dysplasia of the hip (DDH) on anteroposterior (AP) radiographs.
Materials and Methods:
Of 2601 hip AP radiographs, 5076 cropped unilateral hip joint images were used to construct a dataset that was further divided into training (80%), validation (10%), or test sets (10%). Three radiologists were asked to label the hip images as normal or DDH. To investigate the diagnostic performance of the deep learning algorithm, we calculated the receiver operating characteristics (ROC), precision-recall curve (PRC) plots, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) and compared them with the performance of radiologists with different levels of experience.
Results:
The area under the ROC plot generated by the deep learning algorithm and radiologists was 0.988 and 0.988–0.919, respectively. The area under the PRC plot generated by the deep learning algorithm and radiologists was 0.973 and 0.618– 0.958, respectively. The sensitivity, specificity, PPV, and NPV of the proposed deep learning algorithm were 98.0, 98.1, 84.5, and 99.8%, respectively. There was no significant difference in the diagnosis of DDH by the algorithm and the radiologist with experience in pediatric radiology (p = 0.180). However, the proposed model showed higher sensitivity, specificity, and PPV, compared to the radiologist without experience in pediatric radiology (p < 0.001).
Conclusion
The proposed deep learning algorithm provided an accurate diagnosis of DDH on hip radiographs, which was comparable to the diagnosis by an experienced radiologist.
2.Diagnostic Performance of a New Convolutional Neural Network Algorithm for Detecting Developmental Dysplasia of the Hip on Anteroposterior Radiographs
Hyoung Suk PARK ; Kiwan JEON ; Yeon Jin CHO ; Se Woo KIM ; Seul Bi LEE ; Gayoung CHOI ; Seunghyun LEE ; Young Hun CHOI ; Jung-Eun CHEON ; Woo Sun KIM ; Young Jin RYU ; Jae-Yeon HWANG
Korean Journal of Radiology 2021;22(4):612-623
Objective:
To evaluate the diagnostic performance of a deep learning algorithm for the automated detection of developmental dysplasia of the hip (DDH) on anteroposterior (AP) radiographs.
Materials and Methods:
Of 2601 hip AP radiographs, 5076 cropped unilateral hip joint images were used to construct a dataset that was further divided into training (80%), validation (10%), or test sets (10%). Three radiologists were asked to label the hip images as normal or DDH. To investigate the diagnostic performance of the deep learning algorithm, we calculated the receiver operating characteristics (ROC), precision-recall curve (PRC) plots, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) and compared them with the performance of radiologists with different levels of experience.
Results:
The area under the ROC plot generated by the deep learning algorithm and radiologists was 0.988 and 0.988–0.919, respectively. The area under the PRC plot generated by the deep learning algorithm and radiologists was 0.973 and 0.618– 0.958, respectively. The sensitivity, specificity, PPV, and NPV of the proposed deep learning algorithm were 98.0, 98.1, 84.5, and 99.8%, respectively. There was no significant difference in the diagnosis of DDH by the algorithm and the radiologist with experience in pediatric radiology (p = 0.180). However, the proposed model showed higher sensitivity, specificity, and PPV, compared to the radiologist without experience in pediatric radiology (p < 0.001).
Conclusion
The proposed deep learning algorithm provided an accurate diagnosis of DDH on hip radiographs, which was comparable to the diagnosis by an experienced radiologist.
3.Practice guideline for the performance of breast ultrasound elastography.
Su Hyun LEE ; Jung Min CHANG ; Nariya CHO ; Hye Ryoung KOO ; Ann YI ; Seung Ja KIM ; Ji Hyun YOUK ; Eun Ju SON ; Seon Hyeong CHOI ; Shin Ho KOOK ; Jin CHUNG ; Eun Suk CHA ; Jeong Seon PARK ; Hae Kyoung JUNG ; Kyung Hee KO ; Hye Young CHOI ; Eun Bi RYU ; Woo Kyung MOON
Ultrasonography 2014;33(1):3-10
Ultrasound (US) elastography is a valuable imaging technique for tissue characterization. Two main types of elastography, strain and shear-wave, are commonly used to image breast tissue. The use of elastography is expected to increase, particularly with the increased use of US for breast screening. Recently, the US elastographic features of breast masses have been incorporated into the 2nd edition of the Breast Imaging Reporting and Data System (BI-RADS) US lexicon as associated findings. This review suggests practical guidelines for breast US elastography in consensus with the Korean Breast Elastography Study Group, which was formed in August 2013 to perform a multicenter prospective study on the use of elastography for US breast screening. This article is focused on the role of elastography in combination with B-mode US for the evaluation of breast masses. Practical tips for adequate data acquisition and the interpretation of elastography results are also presented.
Breast*
;
Consensus
;
Elasticity Imaging Techniques*
;
Information Systems
;
Mass Screening
;
Ultrasonography*