1.Transcriptome sequencing reveals molecular mechanism of seed dormancy release of Zanthoxylum nitidum.
Chang-Qian QUAN ; Dan-Feng TANG ; Jian-Ping JIANG ; Yan-Xia ZHU
China Journal of Chinese Materia Medica 2025;50(1):102-110
The transcriptome sequencing based on Illumina Novaseq 6000 Platform was performed with the untreated seed embryo(DS), stratified seed embryo(SS), and germinated seed embryo(GS) of Zanthoxylum nitidum, aiming to explore the molecular mechanism regulating the seed dormancy and germination of Z. nitidum and uncover key differentially expressed genes(DEGs). A total of 61.41 Gb clean data was obtained, and 86 386 unigenes with an average length of 773.49 bp were assembled. A total of 29 290 DEGs were screened from three comparison groups(SS vs DS, GS vs SS, and GS vs DS), and these genes were annotated on 134 Kyoto Encyclopedia of Genes and Genomes(KEGG) pathways. KEGG enrichment analysis revealed that the plant hormone signal transduction pathway is the richest pathway, containing 226 DEGs. Among all DEGs, 894 transcription factors were identified, which were distributed across 34 transcription factor families. These transcription factors were also mainly concentrated in plant hormone signal transduction and mitogen-activated protein kinase(MAPK) signaling pathways. Further real-time quantitative polymerase chain reaction(RT-qPCR) validation of 12 DEGs showed that the transcriptome data is reliable. During the process of seed dormancy release and germination, a large number of DEGs involved in polysaccharide degradation, protein synthesis, lipid metabolism, and hormone signal transduction were expressed. These genes were involved in multiple metabolic pathways, forming a complex regulatory network for dormancy and germination. This study lays a solid foundation for analyzing the molecular mechanisms of seed dormancy and germination of Z. nitidum.
Zanthoxylum/metabolism*
;
Plant Dormancy/genetics*
;
Seeds/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Transcriptome
;
Gene Expression Profiling
;
Germination
;
Transcription Factors/metabolism*
;
Plant Growth Regulators/genetics*
;
Signal Transduction
2.Potential of Cinnamomum zeylanicum for metabolic syndrome management: insights from in vivo and human studies.
Saikrupa ADARTHAIYA ; Vishnu Kirthi ARIVARASAN
Journal of Integrative Medicine 2025;23(3):218-229
Metabolic syndrome (MetS) is a cluster of risk factors that significantly increase the chances of developing heart disease, type 2 diabetes mellitus, stroke, and other cardiovascular complications. Since current anti-MetS medications like statins, angiotensin-converting enzyme inhibitors, β-blockers, insulin sensitizers and diuretics have been reported to cause unwanted side effects, researchers are exploring promising alternatives. One such alternative relies on the potential of spices and condiments, which have a long history of use in traditional medicine. Among them, Cinnamomum zeylanicum Blume stands out as a popular spice worldwide for its unique taste, aroma, and delicate sweetness compared to other cinnamon varieties. This narrative review aims to summarize the in vivo and clinical evidence concerning the efficacy of C. zeylanicum against MetS indices. Relevant articles from PubMed, Scopus and Google scholar databases were reviewed. In vivo results suggested that C. zeylanicum preparations (extracts, essential oil, crude powder, bioactive compounds, and biosynthesized nanoparticles) were remarkably efficient in ameliorating MetS indices, while the clinical data were less and with several methodological limitations. Further robust clinical studies are warranted to definitively establish C. zeylanicum as a promising functional food for mitigating MetS, potentially leading to its dietary integration as a natural approach to improve metabolic health. Please cite this article as: Adarthaiya S, Arivarasan VK. Potential of Cinnamomum zeylanicum for metabolic syndrome management: insights from in vivo and human studies. J Integr Med. 2025; 23(3): 218-229.
Cinnamomum zeylanicum/chemistry*
;
Humans
;
Metabolic Syndrome/drug therapy*
;
Plant Extracts/pharmacology*
;
Animals
;
Phytotherapy
3.Fungal luminescence pathways: research and applications.
Yujie WU ; Jiarui XU ; Hongyu CHEN ; Hao DU
Chinese Journal of Biotechnology 2024;40(1):1-14
The fungal bioluminescence pathway (FBP) is a metabolic pathway responsible for the generation of bioluminescence derived from fungi. This pathway utilizes caffeic acid as the substrate, generating a high-energy intermediate, and the decomposition of which yields green fluorescence with a wavelength of approximately 520 nm. The FBP is evolutionally conserved in luminescent fungal groups. Unlike other bioluminescent systems, the FBP is particularly suitable for engineering applications in eukaryotic organisms, especially in plants. Currently, metabolically engineered luminescent plants are able to emit visible light to illuminate its surroundings, which can be visualized clearly in the dark. The fungal bioluminescent system could be explored in various applications in molecular biology, biosensors and glowing ornamental plants, and even green lighting along city streets.
Luminescence
;
Light
;
Fluorescence
;
Eukaryota
;
Green Light
4.Advances on BTB protein ubiquitination mediated plant development and stress response.
Tongtong LÜ ; Wenhui YAN ; Yan LIANG ; Yin DING ; Qingxia YAN ; Jinhua LI
Chinese Journal of Biotechnology 2024;40(1):63-80
The BTB (broad-complex, tramtrack, and bric-à-brac) domain is a highly conserved protein interaction motif in eukaryotes. They are widely involved in transcriptional regulation, protein degradation and other processes. Recently, an increasing number of studies have shown that these genes play important roles in plant growth and development, biotic and abiotic stress processes. Here, we summarize the advances of these proteins ubiquitination-mediated development and abiotic stress responses in plants based on the protein structure, which may facilitate the study of this type of gene in plants.
Eukaryota
;
Plant Development/genetics*
;
Proteolysis
;
Ubiquitination
5.Prevalence of Echinococcus infections in wild carnivores based on copro - DNA tests in Serthar County of Sichuan Province.
L YANG ; Y YANG ; W YU ; Q WANG ; B ZHONG ; K HUA ; Y LIU ; Y HUANG
Chinese Journal of Schistosomiasis Control 2023;35(5):492-496
OBJECTIVE:
To investigate the prevalence of Echinococcus infections in wild carnivores in Serthar County, Sichuan Province, so as to provide insights into echinococcosis control in local areas.
METHODS:
Stool samples were collected from wild carnivores in Serthar County, Sichuan Province in May 2021, and the host sources of stool samples and Echinococcus infections were identified using PCR assays. The prevalence of E. multilocularis, E. granulosus and E. shiquicus infections was estimated in different hosts.
RESULTS:
A total of 583 stool samples were collected from wild carnivores, including 147 stool samples from fox, 154 from wolf, 227 from wild dogs and 11 from lynx. The overall prevalence of E. multilocularis, E. granulosus and E. shiquicus infections was 5.68%, 0.19% and 14.20% in canine stool samples, and no E. granulosus infection was detected in fox stool samples, while the prevalence of E. multilocularis and E. shiquicus infections was 0.68% and 47.62% in fox stool samples (χ2 = 88.41, P < 0.001). No E. granulosus or E. shiquicus infection was detected in wolf stool samples, and the prevalence of E. multilocularis infection was 10.39% in wolf stool samples. The prevalence of E. multilocularis, E. granulosus and E. shiquicus infections was 5.73%, 0.44% and 2.20% in canine stool samples (χ2 = 12.13, P < 0.01). In addition, the prevalence of E. multilocularis infections was significantly higher in wolf stool samples than in canine and fox stool samples (χ2 = 13.23, P < 0.01), and the prevalence of E. shiquicus infections was significantly higher in fox stool samples than in canine and wolf stool samples (χ2 = 187.01, P < 0.001). No Echinococcus infection was identified in 11 lynx stool samples.
CONCLUSIONS
The prevalence of Echinococcus infections is high in wild canines in Serthar County, Sichuan Province. Wolf, wild dog and fox all participate in the wild life cycle of E. multilocularis in Serthar County, and wolf and wild dogs may play a more important role.
Animals
;
Dogs/microbiology*
;
China/epidemiology*
;
DNA, Helminth/genetics*
;
Echinococcosis/veterinary*
;
Feces
;
Foxes/microbiology*
;
Lynx/microbiology*
;
Prevalence
;
Wolves/microbiology*
;
Carnivora/microbiology*
6.Research advance on structure and function of amides in Zanthoxylum plants.
Qian-Nv YE ; Xiao-Feng SHI ; Jun-Li YANG
China Journal of Chinese Materia Medica 2023;48(9):2406-2418
Zanthoxylum belongs to the Rutaceae family, and there are 81 Zanthoxylum species and 36 varieties in China. Most of the Zanthoxylum plants are used as culinary spice. In recent years, scholars in China and abroad have carried out in-depth research on Zanthoxylum plants, and found that the peculiar numbing sensation of Zanthoxylum plants originates from amides. It is also determined that amides are an important material basis for exerting pharmacological effects, especially in anti-inflammatory analgesia, anesthesia and other aspects. In this paper, 123 amides in 26 Zanthoxylum plants and their pharmacological activity that have been reported were summarized, which provided scientific reference for the clinical application of Zanthoxylum plants and the research and development of new drugs, and also facilitated the sustainable development and utilization of Zanthoxylum plant resources.
Zanthoxylum/chemistry*
;
Amides/chemistry*
;
Plant Extracts/pharmacology*
;
China
7.Chemical components of Magnoliae Officinalis Cortex of different origins and with different tree ages before and after being processed with ginger juice:a qualitative and quantitative analysis.
Jia-Qi LI ; Zhen-Zhen XUE ; Bin YANG
China Journal of Chinese Materia Medica 2023;48(9):2435-2454
This study aimed to investigate the impact of ginger juice on chemical profile of Magnoliae Officinalis Cortex(MOC) when they were processed together. Ultra-high-performance liquid chromatography coupled to quadrupole-orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was used for qualitative analysis of the chemical component of MOC samples before and after being processed with ginger juice. UPLC was performed to observe the content variation of eight main components in processed MOC. A total of 174 compounds were identified or tentatively deduced from processed and unprocessed MOC samples according to MS data obtained in positive and negative ion mode. After MOC was processed with ginger juice, the peak areas of most phenolics increased, while the peak areas of most phenylethanoid glycosides decreased; as for neolignans, oxyneolignans, other lignans and alkaloids, changes in the peak area were variable, and the peak areas of terpenoid-lignans varied little. Additionally, gingerols and diarylheptanoids were only detected in the processed MOC sample. The contents of syringin, magnoloside A, and magnoloside B decreased significantly in the processed MOC sample while no significant difference was observed in the contents of magnoflorine, magnocurarine, honokiol, obovatol, and magnolol. This study comprehensively explored the content variation of chemical components in processed and unprocessed MOC samples derived from different regions and with different tree ages using UPLC and UHPLC-Q-Orbitrap HRMS, and summarized the variation characteristics of various compounds. The results provide a data foundation for further research on pharmacodynamic substances of MOC processed with ginger juice.
Ginger
;
Trees
;
Chromatography, High Pressure Liquid/methods*
;
Alkaloids
;
Lignans/analysis*
8.Processing Magnoliae Officinalis Cortex with ginger juice: process optimization based on AHP-CRITIC weighting method and composition changes after processing.
Yu-Fang QI ; Xing-Chen FAN ; Si-Chen WANG ; Yu-An SU ; Ke-Wei ZHANG ; Chun-Qin MAO ; Tu-Lin LU
China Journal of Chinese Materia Medica 2023;48(14):3806-3814
The weight coefficients of appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol were determined by analytic hierarchy process(AHP), criteria importance though intercrieria correlation(CRITIC), and AHP-CRITIC weighting method, and the comprehensive scores were calculated. The effects of ginger juice dosage, moistening time, proces-sing temperature, and processing time on the quality of Magnoliae Officinalis Cortex(MOC) were investigated, and Box-Behnken design was employed to optimize the process parameters. To reveal the processing mechanism, MOC, ginger juice-processed Magnoliae Officinalis Cortex(GMOC), and water-processed Magnoliae Officinalis Cortex(WMOC) were compared. The results showed that the weight coefficients of the appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol determined by AHP-CRITIC weighting method were 0.134, 0.287, and 0.579, respectively. The optimal processing parameters of GMOC were ginger juice dosage of 8%, moistening time of 120 min, and processing at 100 ℃ for 7 min. The content of syringoside and magnolflorine in MOC decreased after processing, and the content of honokiol and magnolol followed the trend of GMOC>MOC>WMOC, which suggested that the change in clinical efficacy of MOC after processing was associated with the changes of chemical composition. The optimized processing technology is stable and feasible and provides references for the modern production and processing of MOC.
Ginger
;
Magnolia/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Biphenyl Compounds/chemistry*
;
Lignans/chemistry*
9.Eukaryotic expression and antigen epitope prediction of the LRRC15 protein in excretory secretory antigens of Taenia solium cysticercus.
Chinese Journal of Schistosomiasis Control 2022;34(3):286-291
OBJECTIVE:
To conduct eukaryotic expression of the leucine-rich repeat containing 15 (LRRC15), a differentially expressed protein in excretory secretory antigens of Taenia solium cysticercus, and predict its antigen epitope.
METHODS:
The molecular weight, stability, amino acid sequence composition, isoelectric point and T lymphocyte epitope of the LRRC15 protein were predicted using the bioinformatics online softwares ExPASy-PortParam and Protean. The full-length splicing primers were designed using PCR-based accurate synthesis, and the LRRC15 gene was synthesized. The recombinant pcDNA3.4-LRRC15 plasmid was constructed and transfected into HEK293 cells to express the LRRC15 protein. In addition, the LRRC15 protein was characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting.
RESULTS:
The recombinant pcDNA3.4-LRRC15 plasmid was successfully constructed, which expressed the target LRRC15 protein with an approximately molecular weight of 70 kDa. Bioinformatics prediction with the ExPASy-PortParam software showed that LRRC15 was a hydrophilic protein, which was consisted of 644 amino acids and had a molecular weight of 69.89 kDa and an isoelectric point of 5.6. The molecular formula of the LRRC15 protein was C3073H4942N846O953S28 and had an instability coefficient is 50.3, indicating that LRRC15 was an instable protein. Bioinformatics prediction with the Protean software showed that the dominant T-cell antigen epitopes were located in 292 to 295, 353 to 361, 521 to 526 and 555 to 564 amino acids of the LRRC15 protein, and the T-cell antigen epitopes with a high hydrophilicity, good flexibility, high surface accessibility and high antigenicity index were found in 122 to 131, 216 to 233, 249 to 254, 333 to 343, 358 to 361, 368 to 372, 384 to 386, 407 to 412, 445 to 450, 469 to 481, 553 to 564, 588 to 594, 607 to 617 and 624 to 639 amino acids. Following transfection of the recombinant pcDNA3.4-LRRC15 plasmid into HEK293 cells, SDS-PAGE and Western blotting identified LRRC15 proteins in cell secretory culture media, cell lysis supernatants and sediments. The LRRC15-His fusion protein was purified from the cell culture medium, and SDS-PAGE identified a remarkable band at approximately 70 kDa, while Western blotting successfully recognized the band of the recombinant LRRC15 protein.
CONCLUSIONS
The eukaryotic expression and antigen epitope prediction of the LRRC15 protein in the excretory secretory antigens of T. solium cysticercus have been successfully performed, which provides insights into further understandings of its biological functions.
Amino Acids
;
Animals
;
Antigens, Helminth/genetics*
;
Cysticercus/genetics*
;
Epitopes/genetics*
;
Eukaryota
;
HEK293 Cells
;
Humans
;
Leucine-Rich Repeat Proteins
;
Membrane Proteins
;
Taenia solium/genetics*
10.Enhancement of harvesting efficiency and polyunsaturated fatty acid-rich lipid production of Aurantiochytrium sp. SW1 by co-cultivation with oleaginous fungus Cunninghamella bainieri 2A1
Nur Athirah Ahmad Jailani ; Pranesha Prabakaran ; Mohamed Yusuf Mohamed Nazir ; Wan Syaidatul Aqma Mohd Noor ; Aidil Abdul Hamid
Malaysian Journal of Microbiology 2022;18(6):620-628
Aims:
Thraustochytrids have been shown to be excellent lipid producers due to their ability to accumulate over 50% lipid (g/g biomass) containing up to 50% docosahexaenoic acid (DHA). However, efficient and cost-effective cell recovery of lipid-rich biomass has become a significant challenge at the industrial scale. In this study, we attempted to enhance the harvesting efficiency (HE) and the DHA content of Aurantiochytrium sp. through co-cultivation with a γ-linolenic acid (GLA)-producing oleaginous filamentous fungus, Cunninghamella bainieri 2A1.
Methodology and results:
A 72 h old C. bainieri 2A1 culture in the form of loose mycelia or pellets of various sizes was added into 72 h old Aurantiochytrium sp. cultures and further incubated for 48 h. The HE of Aurantiochytrium sp. was then determined by comparing the remaining OD values of the supernatant with and without minimal centrifugation at 4000× g. Results showed that 63.23% of HE was achieved without centrifugation from co-cultivation with dispersed mycelia. Higher HE between 96.71-99.55% was achieved when centrifugation was implemented, with the highest value resulting from co-cultivation with dispersed mycelia. These are higher than HE of centrifuged control cultures (80%) consisting of Aurantiochytrium sp. monocultures, suggesting that co-cultivation with C. bainieri 2A1 facilitates the recovery of Aurantiochytrium sp. cells. Moreover, the co-cultivation also resulted in a 28% increase in DHA compared to non-optimized cultures.
Conclusion, significance and impact of study
This study provides the first evidence of enhancement in harvesting and DHA content of oleaginous thraustochytrids that could be achieved through co-cultivation with oleaginous fungi.
Heterotrophic Processes
;
Cunninghamella
;
Eukaryota


Result Analysis
Print
Save
E-mail