1.Inhibitory Effect of Eukaryotic Expression Vector Bearing TFPI-2 Gene on SHI-1 Cell Growth.
Jun-Jun LI ; Pei LIAO ; Feng WEN ; Ze-Yu LUO ; Yi-Xiong CAO
Journal of Experimental Hematology 2019;27(6):1812-1819
OBJECTIVE:
To construct a eukaryotic expression vector of human tissue factor pathway inhibitor-2 (TFPI-2) and to investigate the effect of TFPI-2 gene on the growth of acute monocytic leukemia cell line (SHI-1).
METHODS:
The cDNA of TFPI-2 was obtained by genetic chemical synthesis, the TFPI-2 gene and the linear vector fragment were ligated and inserted into the multiple cloning site of PEGFP-N1 vector, and the eukaryotic expression vector PEGFP-N1-TFPI-2 was transfected SHI-1 cells, then the obtained SHI-1 cells was observed by fluorescence microscopy; MTT assay was used to detect the effect of TFPI-2 gene on the relative growth rate of SHI-1 cells at the different time-point; RT-PCR was used to detect TFPI-2 mRNA expression levels in the cells of each group before and after TFPI-2 transfection; TFPI-2 protein expression was detected by Western blot. The cells which successfully transfected with PEGFP-N1-TFPI-2 vector were named as SHI-1-TFPI-2 (experimental group), and the cells transfected with the empty vector pEGFP-N1 and the untransfected cells were named as SHI-1-V and SHI-1-P and used as the control group.
RESULTS:
The human TFPI-2 gene eukaryotic expression vector PEGFP-N1-TFPI-2 was successfully constructed, then the transfected into SHI-1 cells, observed by fluorescence microscopy 24 hours later, as a result, the PEGFP-N1-TFPI-2 was successfully transferred into SHI-1 cells, and the number of fluorescent cells increased after 48 h and 72 h. RT-PCR showed that the gray scale ratio of TFPI-2 gene to β- actin in the experimental group was higher than that in the control group. The gray scale ratio was 0.51±0.04 in SHI-1-V group, 0.52±0.03 in SHI-1-P group, 0.87±0.08 in SHI-1-TFPI-2 group, and the difference between SHI-1-TFPI-2 and SHI-1-V, SHI-1-P group was statistically significant (P<0.05).
CONCLUSION
The expression of TFPI-2 gene in PEGFP-N1-TFPI-2 can inhibit the growth of SHI-1 cells, which provides a research direction for gene therapy of leukemia in the future.
Eukaryota
;
Genetic Vectors
;
Glycoproteins
;
metabolism
;
Green Fluorescent Proteins
;
Humans
;
Transfection
2.DEAD/DExH-Box RNA Helicases in Selected Human Parasites.
Laurence A MARCHAT ; Silvia I ARZOLA-RODRIGUEZ ; Olga HERNANDEZ-DE LA CRUZ ; Itzel LOPEZ-ROSAS ; Cesar LOPEZ-CAMARILLO
The Korean Journal of Parasitology 2015;53(5):583-595
DEAD/DExH-box RNA helicases catalyze the folding and remodeling of RNA molecules in prokaryotic and eukaryotic cells, as well as in many viruses. They are characterized by the presence of the helicase domain with conserved motifs that are essential for ATP binding and hydrolysis, RNA interaction, and unwinding activities. Large families of DEAD/DExH-box proteins have been described in different organisms, and their role in all molecular processes involving RNA, from transcriptional regulation to mRNA decay, have been described. This review aims to summarize the current knowledge about DEAD/DExH-box proteins in selected protozoan and nematode parasites of medical importance worldwide, such as Plasmodium falciparum, Leishmania spp., Trypanosoma spp., Giardia lamblia, Entamoeba histolytica, and Brugia malayi. We discuss the functional characterization of several proteins in an attempt to understand better the molecular mechanisms involving RNA in these pathogens. The current data also highlight that DEAD/DExH-box RNA helicases might represent feasible drug targets due to their vital role in parasite growth and development.
Animals
;
Eukaryota/*enzymology
;
*Gene Expression Regulation
;
Parasites/*enzymology
;
RNA/*metabolism
;
RNA Helicases/*metabolism
3.Progress in metabolic mechanism of docosahexenoic acid production by fermentation.
Yun FENG ; Lujing REN ; Ping WEI ; Qianqian TONG ; Xiaojun JI ; He HUANG
Chinese Journal of Biotechnology 2010;26(9):1225-1231
Docosahexenoic acid (DHA) is an important polyunsaturated fatty acid which is beneficial to human health. Compared with the DHA derived from fish oil, DHA by microbial production possesses many advantages, and has a bright prospect. In this article, we reviewed strains, metabolic pathway, key enzymes and mechanism of lipid accumulation for microbial production of DHA. Those information would be greatly helpful for further improving DHA production by metabolic engineering.
Docosahexaenoic Acids
;
biosynthesis
;
Eukaryota
;
metabolism
;
Fermentation
;
Industrial Microbiology
;
methods
;
Metabolic Engineering
;
methods
4.Exploitation and utilization of rich lipids-microalgae, as new lipids feedstock for biodiesel production--a review.
Donghui SONG ; Lijun HOU ; Dingji SHI
Chinese Journal of Biotechnology 2008;24(3):341-348
As a renewable energy sources to replace conventional fossil fuels, biodiesel fuels have been becoming increasingly requirements to global fuels market. Biodiesel derived from oil crops cannot realistically satisfy even more fraction of the raw material existing costs and soil competitive demand for its growth. Microalgae appear to be the advantage of costs that is capable of higher photosynthetic efficiency, larger biomass, faster growth compared to those of oil crops. Lipid content of many microalgae is usually 80% of its dry weight. Genetic microalgae with high-oil productivity by genetic manipulations are capable of making microalgal biodiesel economically competitive with petrodiesel through large-scale production of genetic microalgal biomass. As demonstrated here, the use of biodiesel fuels in home and abroad are currently introduced, and the cost advantage of microalgae as the raw material is analyzed; And moreover, the progress of microalgal genetic engineering in regulation of lipid metabolism and the problems in the construct of genetic microalgae strains as well as approaches for making microalgal biodiesel appear to be an important source of renewable fuel that has the potential to completely displace fossil diesel are discussed in this review.
Bioelectric Energy Sources
;
trends
;
Biotechnology
;
methods
;
Eukaryota
;
chemistry
;
genetics
;
metabolism
;
Fatty Acids
;
analysis
;
Gasoline
;
Lipids
;
analysis
5.Identification and expression analysis of WRKY gene family in eukaryotic algae.
Yanan SONG ; Tao LUO ; Chunchao ZHAO ; Chunli JI ; Chunhui ZHANG ; Ruiyan MA ; Hongli CUI ; Runzhi LI
Chinese Journal of Biotechnology 2022;38(5):1965-1980
WRKY is a superfamily of plant-specific transcription factors, playing a critical regulatory role in multiple biological processes such as plant growth and development, metabolism, and responses to biotic and abiotic stresses. Although WRKY genes have been characterized in a variety of higher plants, little is known about them in eukaryotic algae, which are close to higher plants in evolution. To fully characterize algal WRKY family members, we carried out multiple sequence alignment, phylogenetic analysis, and conserved domain prediction to identify the WRKY genes in the genomes of 30 algal species. A total of 24 WRKY members were identified in Chlorophyta, whereas no WRKY member was detected in Rhodophyta, Glaucophyta, or Bacillariophyta. The 24 WRKY members were classified into Ⅰ, Ⅱa, Ⅱb and R groups, with a conserved heptapeptide domain WRKYGQ(E/A/H/N)K and a zinc finger motif C-X4-5-C-X22-23-H-X-H. Haematococcus pluvialis, a high producer of natural astaxanthin, contained two WRKY members (HaeWRKY-1 and HaeWRKY-2). Furthermore, the coding sequences of HaeWRKY-1 and HaeWRKY-2 genes were cloned and then inserted into prokaryotic expression vector. The recombinant vectors were induced to express in Escherichia coli BL21(DE3) cells and the fusion proteins were purified by Ni-NTA affinity chromatography. HaeWRKY-1 had significantly higher expression level than HaeWRKY-2 in H. pluvialis cultured under normal conditions. High light stress significantly up-regulated the expression of HaeWRKY-1 while down-regulated that of HaeWRKY-2. The promoters of HaeWRKY genes contained multiple cis-elements responsive to light, ethylene, ABA, and stresses. Particularly, the promoter of HaeWRKY-2 contained no W-box specific for WRKY binding. However, the W-box was detected in the promoters of HaeWRKY-1 and the key enzyme genes HaeBKT (β-carotene ketolase) and HaePSY (phytoene synthase) responsible for astaxanthin biosynthesis. Considering these findings and the research progress in the related fields, we hypothesized that the low expression of HaeWRKY-2 under high light stress may lead to the up-regulation of HaeWRKY-1 expression. HaeWRKY-1 may then up-regulate the expression of the key genes (HaeBKT, HaePSY, etc.) for astaxanthin biosynthesis, consequently promoting astaxanthin enrichment in algal cells. The findings provide new insights into further analysis of the regulatory mechanism of astaxanthin biosynthesis and high light stress response of H. pluvialis.
Eukaryota
;
Gene Expression Regulation, Plant
;
Phylogeny
;
Plant Proteins/metabolism*
;
Plants/metabolism*
;
Stress, Physiological/genetics*
;
Transcription Factors/metabolism*
7.Alternative Polyadenylation in Human Diseases.
Jae Woong CHANG ; Hsin Sung YEH ; Jeongsik YONG
Endocrinology and Metabolism 2017;32(4):413-421
Varying length of messenger RNA (mRNA) 3′-untranslated region is generated by alternating the usage of polyadenylation sites during pre-mRNA processing. It is prevalent through all eukaryotes and has emerged as a key mechanism for controlling gene expression. Alternative polyadenylation (APA) plays an important role for cell growth, proliferation, and differentiation. In this review, we discuss the functions of APA related with various physiological conditions including cellular metabolism, mRNA processing, and protein diversity in a variety of disease models. We also discuss the molecular mechanisms underlying APA regulation, such as variations in the concentration of mRNA processing factors and RNA-binding proteins, as well as global transcriptome changes under cellular signaling pathway.
Eukaryota
;
Gene Expression
;
Humans*
;
Metabolism
;
Polyadenylation*
;
RNA Precursors
;
RNA, Messenger
;
RNA-Binding Proteins
;
TOR Serine-Threonine Kinases
;
Transcriptome
8.PTP1B inhibitory activities of bromophenol derivatives from algae.
Da-Yong SHI ; Feng XU ; Jing LI ; Shu-Ju GUO ; Hua SU ; Li-Jun HAN
China Journal of Chinese Materia Medica 2008;33(19):2238-2240
OBJECTIVETo study the protein tyrosine phosphatase-1B (PTP1B) inhibitory activity of natural products from algae aiming at searching for new way for the treatment of type 2 diabetes mellitus (T2DM) and obesity.
METHODBromophenols derivatives from algae were screened against the PTP1B by the colorimetric assay with GST/PTP1B fusion protein. The Me2SO was distributed as the full enzyme activity, and Na3VO4 (IC50 2 micromol L(-1)) was distributed as the positive control. Inhibition rate was assayed and IC50 were calculated by LOGIT method.
RESULTThree bromophenols from Rhodomela confervoides and Leathesia nana, 3, 4-dibromo-5-(methoxymethyl)-1, 2-benzenediol (1), 2-methyl-3-(2, 3-dibromo4, 5-dihydroxy)-propylaldehyde (2) and 3-(2, 3-dibromo-4, 5-dihydroxy-phenyl)-4-bromo-5, 6-dihydroxy-1, 3-dihydroiso-benzofuran (3) showed significant inhibitory activity against PTP1B. IC50 values were 3.4 +/- micromol L(-1), 4.5 micromol L(-1) and 2.8 micromol L(-1), respectively.
CONCLUSIONThe results prove that three bromophenol derivatives from algae with significant inhibitory activity against PTP1B were potential and effective therapeutic agents for treatment of T2DM and obesity.
Diabetes Mellitus, Type 2 ; drug therapy ; metabolism ; Eukaryota ; chemistry ; Phaeophyta ; chemistry ; Phenols ; chemistry ; therapeutic use ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 ; antagonists & inhibitors ; Rhodophyta ; chemistry
9.Nuclear microRNAs and their unconventional role in regulating non-coding RNAs.
Hongwei LIANG ; Junfeng ZHANG ; Ke ZEN ; Chen-Yu ZHANG ; Xi CHEN
Protein & Cell 2013;4(5):325-330
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that are involved in post-transcriptional gene regulation. It has long been assumed that miRNAs exert their roles only in the cytoplasm, where they recognize their target protein-coding messenger RNAs (mRNAs), and result in translational repression or target mRNA degradation. Recent studies, however, have revealed that mature miRNAs can also be transported from the cytoplasm to the nucleus and that these nuclear miRNAs can function in an unconventional manner to regulate the biogenesis and functions of ncRNAs (including miRNAs and long ncRNAs), adding a new layer of complexity to our understanding of gene regulation. In this review, we summarize recent literature on the working model of these unconventional miRNAs and speculate on their biological significance. We have every reason to believe that these novel models of miRNA function will become a major research topic in gene regulation in eukaryotes.
Cell Nucleus
;
genetics
;
Cytoplasm
;
genetics
;
Eukaryota
;
genetics
;
Gene Expression Regulation
;
Humans
;
MicroRNAs
;
genetics
;
RNA Stability
;
genetics
;
RNA, Long Noncoding
;
genetics
;
RNA, Messenger
;
genetics
;
metabolism
10.Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluid.
Wei-lian HU ; Yue-ming WU ; Jian-xin LIU ; Yan-qiu GUO ; Jun-an YE
Journal of Zhejiang University. Science. B 2005;6(8):787-792
The effect of tea saponins (TS) on rumen fermentation and methane emission was examined using an in vitro gas production technique named Reading Pressure Technique. Three levels of TS addition (0, 0.2, 0.4 mg/ml) were evaluated in the faunated and defaunated rumen fluid. Compared to the control, TS addition decreased the 24 h gas production in the faunated rumen fluid, but had a minor effect on gas yield in the defaunated rumen fluid. The TS significantly reduced methane production in vitro. In the faunated rumen fluid, 0.2 or 0.4 mg/ml TS decreased the 24 h methane emission by 12.7% or 14.0%, respectively. Rumen fluid pH value was affected neither by TS addition nor by defaunation. The TS addition had only minor effects on volatile fatty acids, but the yield and pattern of volatile fatty acids were greatly affected by defaunation. While the molar proportion of acetate was not affected by defaunation, the propionate was significantly increased and the butyrate significantly decreased. Ammonia-N concentration and microbial protein yield were influenced by TS inclusion and defaunation. Inclusion of 0.4 mg/ml TS increased the microbial protein mass by 18.4% and 13.8% and decreased the ammonia-N concentration by 8.3% and 19.6% in the faunated and defaunated rumen fluid, respectively. Protozoa counts were significantly reduced by TS inclusion. The current study demonstrated the beneficial effect of TS on methane production and rumen fermentation, and indicated that this may be due to the effect of the associated depression on protozoa counts.
Animals
;
Camellia sinensis
;
metabolism
;
Eukaryota
;
drug effects
;
physiology
;
Fermentation
;
drug effects
;
Gastrointestinal Contents
;
drug effects
;
microbiology
;
In Vitro Techniques
;
Methane
;
metabolism
;
Plant Extracts
;
pharmacology
;
Rumen
;
metabolism
;
microbiology
;
Saponins
;
pharmacology
;
Seeds
;
metabolism
;
Sheep
;
Tea
;
chemistry