1.Evaluating a 3D-printed biodegradable paclitaxel-eluting stent for biliary stricture management after liver transplantation: An in vivo porcine study
Jiyoung KIM ; YoungRok CHOI ; Joon Koo HAN ; Jae Hyun KIM ; Dong-Heon HA ; Eui Soo HAN ; Jiwon KOH ; Jae-Yoon KIM ; Jaewon LEE ; Hyun Hwa CHOI ; Su young HONG ; Jeong-Moo LEE ; Suk Kyun HONG ; Kwang-Woong LEE
Annals of Liver Transplantation 2025;5(2):89-97
Background:
Liver transplantation (LT) is the standard treatment for end-stage liver disease; however, it can lead to biliary strictures in 25%–30% of cases. We aimed to develop a biodegradable stent loaded with paclitaxel that could be inserted during surgery without requiring removal. We evaluated the safety and efficacy of this stent using a porcine model.
Methods:
Fourteen pigs underwent simulated ischemic injury during LT, and a biodegradable paclitaxel-eluting stent was inserted after duct-to-duct anastomosis.Pigs were divided into four groups: no stent (n=3), bare stent (n=3), 300 µg paclitaxel stent (n=4), and 900 µg paclitaxel stent (n=4). After 3 months of follow-up, autopsies were conducted to obtain common bile duct tissue samples, and inflammation and fibrosis thicknesses were assessed under a microscope.
Results:
Most tissues had resolved the inflammatory reactions by the 3-month mark. The thinnest fibrosis thickness was observed in the 900 µg group (359.08±167.23 µm); however, no statistical significance was observed.
Conclusion
This study demonstrated the safety of paclitaxel-eluting biodegradable biliary stents and their positive effects on fibrosis in an ischemic bile duct porcine model. This biodegradable stent represents a potential approach for overcoming the complications associated with biliary strictures after LT.
2.Maternal exposure to airborne particulate matter during pregnancy and lactation induces kidney injury in rat dams and their male offspring: the role of vitamin D in pregnancy and beyond
Min Hwa SON ; Eujin PARK ; Hyung Eun YIM ; Yoon Jeong NAM ; Yu-Seon LEE ; Eui Kyung CHOI ; Sang Hoon JEONG ; Ju‑Han LEE
Kidney Research and Clinical Practice 2024;43(5):648-662
Little is known about the transgenerational effects of maternal exposure to fine particulate matter (PM2.5) on offspring kidney health. This study investigated the effect of maternal administration of PM2.5 or PM2.5 with vitamin D during pregnancy and lactation on renal injury in rat dams and their offspring. Methods: Nine pregnant Sprague-Dawley rats received oral administration of normal saline, airborne PM2.5, or PM2.5 with vitamin D from gestational day 11 to postpartum day 21. Kidneys of rat dams (n = 3 for each group) and their male offspring (n = 5 for each group) were taken for analysis on postpartum or postnatal day 21. Results: Maternal PM2.5 exposure increased glomerular damage, tubulointerstitial injury, and cortical macrophage infiltration in both dams and pups; all increases were attenuated by vitamin D administration. In dam kidneys, PM2.5 increased the protein expression of vitamin D receptor (VDR), klotho, and tumor necrosis factor-α; vitamin D lessened these changes. The expressions of renin, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-kappa B (NF-κB) p50 decreased in rat dams exposed to PM2.5. In offspring kidneys, exposure to maternal PM2.5 reduced the expression of VDR, renin, angiotensin-converting enzyme (ACE), Nrf2, and NF-κB p50, but increased cytochrome P450 24A1 expression. Maternal vitamin D administration with PM2.5 enhanced VDR, ACE, and NF-κB p50 activities in pup kidneys. Conclusion: PM2.5 exposure during nephrogenesis may exert transgenerational renal impairment, and maternal vitamin D intake could attenuate PM2.5-induced kidney damage in mothers and their offspring.
3.Maternal exposure to airborne particulate matter during pregnancy and lactation induces kidney injury in rat dams and their male offspring: the role of vitamin D in pregnancy and beyond
Min Hwa SON ; Eujin PARK ; Hyung Eun YIM ; Yoon Jeong NAM ; Yu-Seon LEE ; Eui Kyung CHOI ; Sang Hoon JEONG ; Ju‑Han LEE
Kidney Research and Clinical Practice 2024;43(5):648-662
Little is known about the transgenerational effects of maternal exposure to fine particulate matter (PM2.5) on offspring kidney health. This study investigated the effect of maternal administration of PM2.5 or PM2.5 with vitamin D during pregnancy and lactation on renal injury in rat dams and their offspring. Methods: Nine pregnant Sprague-Dawley rats received oral administration of normal saline, airborne PM2.5, or PM2.5 with vitamin D from gestational day 11 to postpartum day 21. Kidneys of rat dams (n = 3 for each group) and their male offspring (n = 5 for each group) were taken for analysis on postpartum or postnatal day 21. Results: Maternal PM2.5 exposure increased glomerular damage, tubulointerstitial injury, and cortical macrophage infiltration in both dams and pups; all increases were attenuated by vitamin D administration. In dam kidneys, PM2.5 increased the protein expression of vitamin D receptor (VDR), klotho, and tumor necrosis factor-α; vitamin D lessened these changes. The expressions of renin, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-kappa B (NF-κB) p50 decreased in rat dams exposed to PM2.5. In offspring kidneys, exposure to maternal PM2.5 reduced the expression of VDR, renin, angiotensin-converting enzyme (ACE), Nrf2, and NF-κB p50, but increased cytochrome P450 24A1 expression. Maternal vitamin D administration with PM2.5 enhanced VDR, ACE, and NF-κB p50 activities in pup kidneys. Conclusion: PM2.5 exposure during nephrogenesis may exert transgenerational renal impairment, and maternal vitamin D intake could attenuate PM2.5-induced kidney damage in mothers and their offspring.
4.Maternal exposure to airborne particulate matter during pregnancy and lactation induces kidney injury in rat dams and their male offspring: the role of vitamin D in pregnancy and beyond
Min Hwa SON ; Eujin PARK ; Hyung Eun YIM ; Yoon Jeong NAM ; Yu-Seon LEE ; Eui Kyung CHOI ; Sang Hoon JEONG ; Ju‑Han LEE
Kidney Research and Clinical Practice 2024;43(5):648-662
Little is known about the transgenerational effects of maternal exposure to fine particulate matter (PM2.5) on offspring kidney health. This study investigated the effect of maternal administration of PM2.5 or PM2.5 with vitamin D during pregnancy and lactation on renal injury in rat dams and their offspring. Methods: Nine pregnant Sprague-Dawley rats received oral administration of normal saline, airborne PM2.5, or PM2.5 with vitamin D from gestational day 11 to postpartum day 21. Kidneys of rat dams (n = 3 for each group) and their male offspring (n = 5 for each group) were taken for analysis on postpartum or postnatal day 21. Results: Maternal PM2.5 exposure increased glomerular damage, tubulointerstitial injury, and cortical macrophage infiltration in both dams and pups; all increases were attenuated by vitamin D administration. In dam kidneys, PM2.5 increased the protein expression of vitamin D receptor (VDR), klotho, and tumor necrosis factor-α; vitamin D lessened these changes. The expressions of renin, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-kappa B (NF-κB) p50 decreased in rat dams exposed to PM2.5. In offspring kidneys, exposure to maternal PM2.5 reduced the expression of VDR, renin, angiotensin-converting enzyme (ACE), Nrf2, and NF-κB p50, but increased cytochrome P450 24A1 expression. Maternal vitamin D administration with PM2.5 enhanced VDR, ACE, and NF-κB p50 activities in pup kidneys. Conclusion: PM2.5 exposure during nephrogenesis may exert transgenerational renal impairment, and maternal vitamin D intake could attenuate PM2.5-induced kidney damage in mothers and their offspring.
5.Maternal exposure to airborne particulate matter during pregnancy and lactation induces kidney injury in rat dams and their male offspring: the role of vitamin D in pregnancy and beyond
Min Hwa SON ; Eujin PARK ; Hyung Eun YIM ; Yoon Jeong NAM ; Yu-Seon LEE ; Eui Kyung CHOI ; Sang Hoon JEONG ; Ju‑Han LEE
Kidney Research and Clinical Practice 2024;43(5):648-662
Little is known about the transgenerational effects of maternal exposure to fine particulate matter (PM2.5) on offspring kidney health. This study investigated the effect of maternal administration of PM2.5 or PM2.5 with vitamin D during pregnancy and lactation on renal injury in rat dams and their offspring. Methods: Nine pregnant Sprague-Dawley rats received oral administration of normal saline, airborne PM2.5, or PM2.5 with vitamin D from gestational day 11 to postpartum day 21. Kidneys of rat dams (n = 3 for each group) and their male offspring (n = 5 for each group) were taken for analysis on postpartum or postnatal day 21. Results: Maternal PM2.5 exposure increased glomerular damage, tubulointerstitial injury, and cortical macrophage infiltration in both dams and pups; all increases were attenuated by vitamin D administration. In dam kidneys, PM2.5 increased the protein expression of vitamin D receptor (VDR), klotho, and tumor necrosis factor-α; vitamin D lessened these changes. The expressions of renin, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-kappa B (NF-κB) p50 decreased in rat dams exposed to PM2.5. In offspring kidneys, exposure to maternal PM2.5 reduced the expression of VDR, renin, angiotensin-converting enzyme (ACE), Nrf2, and NF-κB p50, but increased cytochrome P450 24A1 expression. Maternal vitamin D administration with PM2.5 enhanced VDR, ACE, and NF-κB p50 activities in pup kidneys. Conclusion: PM2.5 exposure during nephrogenesis may exert transgenerational renal impairment, and maternal vitamin D intake could attenuate PM2.5-induced kidney damage in mothers and their offspring.
6.Risk Factors for Distant Metastasis in Extrahepatic Bile Duct Cancer after Curative Resection (KROG 1814)
Younghee PARK ; Tae Hyun KIM ; Kyubo KIM ; Jeong Il YU ; Wonguen JUNG ; Jinsil SEONG ; Woo Chul KIM ; Jin Hwa CHOI ; Ah Ram CHANG ; Bae Kwon JEONG ; Byoung Hyuck KIM ; Tae Gyu KIM ; Jin Hee KIM ; Hae Jin PARK ; Hyun Soo SHIN ; Jung Ho IM ; Eui Kyu CHIE
Cancer Research and Treatment 2024;56(1):272-279
Purpose:
Risk factors predicting distant metastasis (DM) in extrahepatic bile duct cancer (EHBDC) patients treated with curative resection were investigated.
Materials and Methods:
Medical records of 1,418 EHBDC patients undergoing curative resection between Jan 2000 and Dec 2015 from 14 institutions were reviewed. After resection, 924 patients (67.6%) were surveilled without adjuvant therapy, 297 (21.7%) were treated with concurrent chemoradiotherapy (CCRT) and 148 (10.8%) with CCRT followed by chemotherapy. To exclude the treatment effect from innate confounders, patients not treated with adjuvant therapy were evaluated.
Results:
After a median follow-up of 36.7 months (range, 2.7 to 213.2 months), the 5-year distant metastasis-free survival (DMFS) rate was 57.7%. On multivariate analysis, perihilar or diffuse tumor (hazard ratio [HR], 1.391; p=0.004), poorly differentiated histology (HR, 2.014; p < 0.001), presence of perineural invasion (HR, 1.768; p < 0.001), positive nodal metastasis (HR, 2.670; p < 0.001) and preoperative carbohydrate antigen (CA) 19-9 ≥ 37 U/mL (HR, 1.353; p < 0.001) were significantly associated with inferior DMFS. The DMFS rates significantly differed according to the number of these risk factors. For validation, patients who underwent adjuvant therapy were evaluated. In patients with ≥ 3 factors, additional chemotherapy after CCRT resulted in a superior DMFS compared with CCRT alone (5-year rate, 47.6% vs. 27.7%; p=0.001), but the benefit of additional chemotherapy was not observed in patients with 0-2 risk factors.
Conclusion
Tumor location, histologic differentiation, perineural invasion, lymph node metastasis, and preoperative CA 19-9 level predicted DM risk in resected EHBDC. These risk factors might help identifying a subset of patients who could benefit from additional chemotherapy after resection.
7.SARS-CoV-2 mRNA Vaccine ElicitsSustained T Cell Responses Against the Omicron Variant in Adolescents
Sujin CHOI ; Sang-Hoon KIM ; Mi Seon HAN ; Yoonsun YOON ; Yun-Kyung KIM ; Hye-Kyung CHO ; Ki Wook YUN ; Seung Ha SONG ; Bin AHN ; Ye Kyung KIM ; Sung Hwan CHOI ; Young June CHOE ; Heeji LIM ; Eun Bee CHOI ; Kwangwook KIM ; Seokhwan HYEON ; Hye Jung LIM ; Byung-chul KIM ; Yoo-kyoung LEE ; Eun Hwa CHOI ; Eui-Cheol SHIN ; Hyunju LEE
Immune Network 2023;23(4):e33-
Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization.However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccineinduced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARSCoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins.Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein.The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.
8. Aqueous extract of freeze-dried Protaetia brevitarsis larvae promotes osteogenesis by activating β-catenin signaling
Jayasingha Arachchige Chathuranga Chanaka JAYASINGHA ; Gi-Young KIM ; Jayasingha Arachchige Chathuranga Chanaka JAYASINGHA ; Gi-Young KIM ; Kyoung LEE ; Yung CHOI ; Chang-Hee KANG ; Mi-Hwa LEE
Asian Pacific Journal of Tropical Biomedicine 2022;12(3):115-123
Objective: To investigate the effect of an aqueous extract of Protaetia brevitarsis (AEPB) on osteogenesis using preosteoblast MC3T3-E1 cells and zebrafish larvae. Methods: Flow cytometric analysis was used to measure the cytotoxicy. Alkaline phosphatase activity was detetmined using p-nitrophenyl phosphate as a substrate. Calcium deposition was detected using alizarin red staining along with osteogenic marker expression in preosteoblast MC3T3E1 cells. In addition, vertebral formation in zebrafish larvae was detected using calcein staining and osteogenic gene expression. Results: AEPB highly promoted the expression of osteogenic markers including runt-related transcription factor 2, osterix, and alkaline phosphatase, along with elevated levels of mineralization in MC3T3-E1 cells. Moreover, AEPB accelerated vertebral formation in zebrafish larvae accompanied by upregulated expression of osteogenic genes. FH535, an inhibitor of Wnt/β-catenin, suppressed AEPB-induced osteogenic gene expression and vertebral formation, indicating that AEPB stimulates osteogenesis by activating the Wnt/β-catenin signaling pathway. Conclusions: AEPB stimulates osteoblast differentiation and bone formation by activating β-catenin. Therefore, AEPB is a promising material that induces osteogenesis, and is useful for the treatment of bone resorption diseases.
9.Application of an Intraoperative Neuromonitoring System Using a Surface Pressure Sensor in Parotid Surgery: A Rabbit Model Study
Eui-Suk SUNG ; Hyun-Keun KWON ; Sung-Chan SHIN ; Young-Il CHEON ; Jung-Woo LEE ; Da-Hee PARK ; Seong-Wook CHOI ; Hwa-Bin KIM ; Hye-Jin PARK ; Jin-Choon LEE ; Jung-Hoon RO ; Byung-Joo LEE
Clinical and Experimental Otorhinolaryngology 2021;14(1):131-136
Objectives:
. Facial nerve monitoring (FNM) can be used to identify the facial nerve, to obtain information regarding its course, and to evaluate its status during parotidectomy. However, there has been disagreement regarding the efficacy of FNM in reducing the incidence of facial nerve palsy during parotid surgery. Therefore, instead of using electromyography (EMG) to identify the location and state of the facial nerve, we applied an intraoperative neuromonitoring (IONM) system using a surface pressure sensor to detect facial muscle twitching. The objective of this study was to investigate the feasibility of using the IONM system with a surface pressure sensor to detect facial muscle twitching during parotidectomy.
Methods:
. We evaluated the stimulus thresholds for the detection of muscle twitching in the orbicularis oris and orbicularis oculi, as well as the amplitude and latency of EMG and the surface pressure sensor in 13 facial nerves of seven rabbits, using the same stimulus intensity.
Results:
. The surface pressure sensor detected muscle twitching in the orbicularis oris and orbicularis oculi in response to a stimulation of 0.1 mA in all 13 facial nerves. The stimulus threshold did not differ between the surface pressure sensor and EMG.
Conclusion
. The application of IONM using a surface pressure sensor during parotidectomy is noninvasive, reliable, and feasible. Therefore, the IONM system with a surface pressure sensor to measure facial muscle twitching may be an alternative to EMG for verifying the status of the facial nerve.
10.Cohort Profile: The Cardiovascular and Metabolic Diseases Etiology Research Center Cohort in Korea
Jee Seon SHIM ; Bo Mi SONG ; Jung Hyun LEE ; Seung Won LEE ; Ji Hye PARK ; Dong Phil CHOI ; Myung Ha LEE ; Kyoung Hwa HA ; Dae Jung KIM ; Sungha PARK ; Won Woo LEE ; Yoosik YOUM ; Eui Cheol SHIN ; Hyeon Chang KIM
Yonsei Medical Journal 2019;60(8):804-810
Mortalities from cardiovascular disease in Korea have decreased markedly over the past three decades. The major cardiovascular and metabolic risk factors, however, remain prevalent, and their burden on health is large. The Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) planned a cohort study in order to identify novel risk factors and to develop evidence-based prevention strategies of cardiovascular and metabolic diseases. The CMERC deliberately designed two prospective cohorts, a community-based general population cohort (the CMERC cohort) and its sister cohort (a hospital-based high-risk patient cohort), covering a broad spectrum of cardiovascular and metabolic diseases. This paper describes the CMERC cohort study of community-dwelling adults aged 30 to 64 years. A total of 8097 adults completed baseline measurement between 2013 and 2018. Baseline measurements assessed socio-demographic factors, medical history, health-related behaviors, psychological health, social network and support, anthropometry, body composition, and resting blood pressure and comprised electrocardiography, carotid artery ultrasonography, fasting blood analysis, and urinalysis. Both active follow-up through an annual telephone survey and a 5-year on-site health examination survey and passive follow-up through secondary data linkage with national databases, such as national death records, have been applied. Researchers interested in collaborative research may contact the corresponding author.
Adult
;
Anthropometry
;
Blood Pressure
;
Body Composition
;
Cardiovascular Diseases
;
Carotid Arteries
;
Cohort Studies
;
Death Certificates
;
Electrocardiography
;
Fasting
;
Follow-Up Studies
;
Humans
;
Information Storage and Retrieval
;
Korea
;
Metabolic Diseases
;
Mortality
;
Prospective Studies
;
Republic of Korea
;
Risk Factors
;
Siblings
;
Telephone
;
Ultrasonography
;
Urinalysis

Result Analysis
Print
Save
E-mail