1.Heme-binding-mediated negative regulation of the tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) by IDO2.
Young Kwan LEE ; Hoon Bok LEE ; Dong Mi SHIN ; Min Jueng KANG ; Eugene C YI ; Seungjoo NOH ; Jaewoo LEE ; Chulbom LEE ; Chang Ki MIN ; Eun Young CHOI
Experimental & Molecular Medicine 2014;46(11):e121-
Indoleamine 2,3-dioxygenases (IDOs) are tryptophan-catabolizing enzymes with immunomodulatory functions. However, the biological role of IDO2 and its relationship with IDO1 are unknown. To assess the relationship between IDO2 and IDO1, we investigated the effects of co-expression of human (h) IDO2 on hIDO1 activity. Cells co-expressing hIDO1 and hIDO2 showed reduced tryptophan metabolic activity compared with those expressing hIDO1 only. In a proteomic analysis, hIDO1-expressing cells exhibited enhanced expression of proteins related to the cell cycle and amino acid metabolism, and decreased expression of proteins related to cell survival. However, cells co-expressing hIDO1 and hIDO2 showed enhanced expression of negative regulators of cell apoptosis compared with those expressing hIDO1 only. Co-expression of hIDO1 and hIDO2 rescued the cell death induced by tryptophan-depletion through hIDO1 activity. Cells expressing only hIDO2 exhibited no marked differences in proteome profiles or cell growth compared with mock-transfectants. Cellular tryptophan metabolic activity and cell death were restored by co-expressing the hIDO2 mutant substituting the histidine 360 residue for alanine. These results demonstrate that hIDO2 plays a novel role as a negative regulator of hIDO1 by competing for heme-binding with hIDO1, and provide information useful for development of therapeutic strategies to control cancer and immunological disorders that target IDO molecules.
Cell Proliferation
;
Cell Survival
;
Gene Expression
;
HEK293 Cells
;
Heme/*metabolism
;
Humans
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics/*metabolism
;
Protein Binding
;
Tryptophan/*metabolism
;
Up-Regulation
2.Reactive oxygen species regulate context-dependent inhibition of NFAT5 target genes.
Nam Hoon KIM ; Bong Ki HONG ; Soo Youn CHOI ; Hyug MOO KWON ; Chul Soo CHO ; Eugene C YI ; Wan Uk KIM
Experimental & Molecular Medicine 2013;45(7):e32-
The activation of nuclear factor of activated T cells 5 (NFAT5), a well-known osmoprotective factor, can be induced by isotonic stimuli, such as activated Toll-like receptors (TLRs). It is unclear, however, how NFAT5 discriminates between isotonic and hypertonic stimuli. In this study we identified a novel context-dependent suppression of NFAT5 target gene expression in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) or a high salt (NaCl) concentration. Although LPS and NaCl both used NFAT5 as a core transcription factor, these stimuli mutually inhibited distinct sets of NFAT5 targets within the cells. Although reactive oxygen species (ROS) are essential for this inhibition, the source of ROS differed depending on the context: mitochondria for high salt and xanthine oxidase for TLRs. Specifically, the high salt-induced suppression of interleukin-6 (IL-6) production was mediated through the ROS-induced inhibition of NFAT5 binding to the IL-6 promoter. The context-dependent inhibition of NFAT5 target gene expression was also confirmed in mouse spleen and kidney tissues that were cotreated with LPS and high salt. Taken together, our data suggest that ROS function as molecular sensors to discriminate between TLR ligation and osmotic stimuli in RAW 264.7 macrophages, directing NFAT5 activity toward proinflammatory or hypertonic responses in a context-dependent manner.
Animals
;
*Gene Expression Regulation/drug effects
;
Interleukin-6/biosynthesis/genetics
;
Lipopolysaccharides/pharmacology
;
Macrophages/drug effects/metabolism
;
Male
;
Mannitol/pharmacology
;
Mice
;
Mice, Inbred BALB C
;
NF-kappa B/metabolism
;
Promoter Regions, Genetic/genetics
;
Protein Binding/drug effects/genetics
;
Reactive Oxygen Species/*metabolism
;
Rotenone/pharmacology
;
Sodium Chloride/pharmacology
;
Toll-Like Receptors
;
Transcription Factors/genetics/*metabolism
3.The Level of Autoantibodies Targeting Eukaryote Translation Elongation Factor 1 α1 and Ubiquitin-Conjugating Enzyme 2L3 in Nondiabetic Young Adults.
Eunhee G KIM ; Soo Heon KWAK ; Daehee HWANG ; Eugene C YI ; Kyong Soo PARK ; Bo Kyung KOO ; Kristine M KIM
Diabetes & Metabolism Journal 2016;40(2):154-160
BACKGROUND: The prevalence of novel type 1 diabetes mellitus (T1DM) antibodies targeting eukaryote translation elongation factor 1 alpha 1 autoantibody (EEF1A1-AAb) and ubiquitin-conjugating enzyme 2L3 autoantibody (UBE2L3-AAb) has been shown to be negatively correlated with age in T1DM subjects. Therefore, we aimed to investigate whether age affects the levels of these two antibodies in nondiabetic subjects. METHODS: EEF1A1-AAb and UBE2L3-AAb levels in nondiabetic control subjects (n=150) and T1DM subjects (n=101) in various ranges of age (18 to 69 years) were measured using an enzyme-linked immunosorbent assay. The cutoff point for the presence of each autoantibody was determined based on control subjects using the formula: [mean absorbance+3×standard deviation]. RESULTS: In nondiabetic subjects, there were no significant correlations between age and EEF1A1-AAb and UBE2L3-AAb levels. However, there was wide variation in EEF1A1-AAb and UBE2L3-AAb levels among control subjects <40 years old; the prevalence of both EEF1A1-AAb and UBE2L3-AAb in these subjects was 4.4%. When using cutoff points determined from the control subjects <40 years old, the prevalence of both autoantibodies in T1DM subjects was decreased (EEFA1-AAb, 15.8% to 8.9%; UBE2L3-AAb, 10.9% to 7.9%) when compared to the prevalence using the cutoff derived from the totals for control subjects. CONCLUSION: There was no association between age and EEF1A1-AAb or UBE2L3-AAb levels in nondiabetic subjects. However, the wide variation in EEF1A1-AAb and UBE2L3-AAb levels apparent among the control subjects <40 years old should be taken into consideration when determining the cutoff reference range for the diagnosis of T1DM.
Antibodies
;
Autoantibodies*
;
Diabetes Mellitus, Type 1
;
Diagnosis
;
Enzyme-Linked Immunosorbent Assay
;
Eukaryota*
;
Humans
;
Peptide Elongation Factor 1*
;
Peptide Elongation Factors*
;
Prevalence
;
Reference Values
;
Young Adult*
4.Phosphoproteomic analysis identifies activated MET-axis PI3K/AKT and MAPK/ERK in lapatinib-resistant cancer cell line.
Yong Yook LEE ; Hwang Phill KIM ; Min Jueng KANG ; Byoung Kyu CHO ; Sae Won HAN ; Tae You KIM ; Eugene C YI
Experimental & Molecular Medicine 2013;45(11):e64-
Lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) tyrosine kinases, has shown promising results as a growth inhibitor of HER2-positive cancer cells in vitro. However, similar to other EGFR-targeting drugs, acquired resistance to lapatinib by HER2-positive cancer cells remains a major clinical challenge. To elucidate resistance mechanisms to EGFR/HER2-targeting agents, we performed a systematic quantitative comparison of the phosphoproteome of lapatinib-resistant (LR) human gastric cancer cells (SNU216-LR) versus parental cells (SNU216) using a titanium dioxide (TiO2) phosphopeptide enrichment method and analysis with a Q-Exactive hybrid quadrupole-Orbitrap mass spectrometer. Biological network analysis of differentially expressed phosphoproteins revealed apparent constitutive activation of the MET-axis phosphatidylinositide 3-kinase (PI3K)/alpha-serine/threonine-protein kinase (AKT) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways in SNU216-LR. Inhibition of the PI3K/AKT and MAPK/ERK signaling pathways in SNU216-LR also leads to cell cycle arrest, confirming the biological network analysis. Lapatinib sensitivity was restored when cells were treated with several molecular targeting agents in combination with lapatinib. Thus, by integrating phosphoproteomic data, protein networks and effects of signaling pathway modulation on cell proliferation, we found that SNU216-LR maintains constitutive activation of the PI3K/AKT and MAPK/ERK pathways in a MET-dependent manner. These findings suggest that pathway activation is a key compensatory intracellular phospho-signaling event that may govern gastric cancer cell resistance to drug treatment.
Antineoplastic Agents/*pharmacology
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm
;
Humans
;
*MAP Kinase Signaling System
;
Mitogen-Activated Protein Kinase Kinases/metabolism
;
Mitogen-Activated Protein Kinases/metabolism
;
Phosphatidylinositol 3-Kinases/*metabolism
;
Phosphorylation
;
Proteomics
;
Proto-Oncogene Proteins c-akt/*metabolism
;
Proto-Oncogene Proteins c-met/*metabolism
;
Quinazolines/*pharmacology
5.Synapsin-1 and tau reciprocal O-GlcNAcylation and phosphorylation sites in mouse brain synaptosomes.
Min Jueng KANG ; Chaeyoung KIM ; Hyobin JEONG ; Byoung Kyu CHO ; Ae Lan RYOU ; Daehee HWANG ; Inhee MOOK-JUNG ; Eugene C YI
Experimental & Molecular Medicine 2013;45(6):e29-
O-linked N-acetylglucosamine (O-GlcNAc) represents a key regulatory post-translational modification (PTM) that is reversible and often reciprocal with phosphorylation of serine and threonine at the same or nearby residues. Although recent technical advances in O-GlcNAc site-mapping methods combined with mass spectrometry (MS) techniques have facilitated study of the fundamental roles of O-GlcNAcylation in cellular processes, an efficient technique for examining the dynamic, reciprocal relationships between O-GlcNAcylation and phosphorylation is needed to provide greater insights into the regulatory functions of O-GlcNAcylation. Here, we describe a strategy for selectively identifying both O-GlcNAc- and phospho-modified sites. This strategy involves metal affinity separation of O-GlcNAcylated and phosphorylated peptides, beta-elimination of O-GlcNAcyl or phosphoryl functional groups from the separated peptides followed by dithiothreitol (DTT) conjugation (BEMAD), affinity purification of DTT-conjugated peptides using thiol affinity chromatography, and identification of formerly O-GlcNAcylated or phosphorylated peptides by MS. The combined metal affinity separation and BEMAD approach allows selective enrichment of O-GlcNAcylated peptides over phosphorylated counterparts. Using this approach with mouse brain synaptosomes, we identified the serine residue at 605 of the synapsin-1 peptide, 603QASQAGPGPR612, and the serine residue at 692 of the tau peptide, 688SPVVSGDTSPR698, which were found to be potential reciprocal O-GlcNAcylation and phosphorylation sites. These results demonstrate that our strategy enables mapping of the reciprocal site occupancy of O-GlcNAcylation and phosphorylation of proteins, which permits the assessment of cross-talk between these two PTMs and their regulatory roles.
Acetylglucosamine/*metabolism
;
Amino Acid Sequence
;
Animals
;
Brain/*metabolism
;
Chromatography, Affinity
;
Glycosylation
;
Mice
;
Molecular Sequence Data
;
Peptides/isolation & purification
;
Phosphorylation
;
Synapsins/chemistry/*metabolism
;
Synaptosomes/*metabolism
;
Tandem Mass Spectrometry
;
tau Proteins/chemistry/*metabolism
6.The Amniotic Fluid Proteome Differs Significantly between Donor and Recipient Fetuses in Pregnancies Complicated by Twin-to-Twin Transfusion Syndrome
Sun Min KIM ; Byoung Kyu CHO ; Byoung Jae KIM ; Ha Yun LEE ; Errol R NORWITZ ; Min Jueng KANG ; Seung Mi LEE ; Chan Wook PARK ; Jong Kwan JUN ; Eugene C YI ; Joong Shin PARK
Journal of Korean Medical Science 2020;35(10):73-
BACKGROUND: Twin-to-twin transfusion syndrome (TTTS) is a serious complication of monochorionic twin pregnancies. It results from disproportionate blood supply to each fetus caused by abnormal vascular anastomosis within the placenta. Amniotic fluid (AF) is an indicator reflecting the various conditions of the fetus, and an imbalance in AF volume is essential for the antenatal diagnosis of TTTS by ultrasound. In this study, two different mass spectrometry quantitative approaches were performed to identify differentially expressed proteins (DEPs) within matched pairs of AF samples.METHODS: We characterized the AF proteome in pooled AF samples collected from donor and recipient twin pairs (n = 5 each) with TTTS by a global proteomics profiling approach and then preformed the statistical analysis to determine the DEPs between the two groups. Next, we carried out a targeted proteomic approach (multiple reaction monitoring) with DEPs to achieve high-confident TTTS-associated AF proteins.RESULTS: A total of 103 AF proteins that were significantly altered in their abundances between donor and recipient fetuses. The majority of upregulated proteins identified in the recipient twins (including carbonic anhydrase 1, fibrinogen alpha chain, aminopeptidase N, alpha-fetoprotein, fibrinogen gamma chain, and basement membrane-specific heparan sulfate proteoglycan core protein) have been associated with cardiac or dermatologic disease, which is often seen in recipient twins as a result of volume overload. In contrast, proteins significantly upregulated in AF collected from donor twins (including IgGFc-binding protein, apolipoprotein C-I, complement C1q subcomponent subunit B, apolipoprotein C-III, apolipoprotein A-II, decorin, alpha-2-macroglobulin, apolipoprotein A-I, and fibronectin) were those previously shown to be associated with inflammation, ischemic cardiovascular complications or renal disease.CONCLUSION: In this study, we identified proteomic biomarkers in AF collected from donor and recipient twins in pregnancies complicated by TTTS that appear to reflect underlying functional and pathophysiological challenges faced by each of the fetuses.
7.The Amniotic Fluid Proteome Differs Significantly between Donor and Recipient Fetuses in Pregnancies Complicated by Twin-to-Twin Transfusion Syndrome
Sun Min KIM ; Byoung Kyu CHO ; Byoung Jae KIM ; Ha Yun LEE ; Errol R NORWITZ ; Min Jueng KANG ; Seung Mi LEE ; Chan Wook PARK ; Jong Kwan JUN ; Eugene C YI ; Joong Shin PARK
Journal of Korean Medical Science 2020;35(10):e73-
BACKGROUND:
Twin-to-twin transfusion syndrome (TTTS) is a serious complication of monochorionic twin pregnancies. It results from disproportionate blood supply to each fetus caused by abnormal vascular anastomosis within the placenta. Amniotic fluid (AF) is an indicator reflecting the various conditions of the fetus, and an imbalance in AF volume is essential for the antenatal diagnosis of TTTS by ultrasound. In this study, two different mass spectrometry quantitative approaches were performed to identify differentially expressed proteins (DEPs) within matched pairs of AF samples.
METHODS:
We characterized the AF proteome in pooled AF samples collected from donor and recipient twin pairs (n = 5 each) with TTTS by a global proteomics profiling approach and then preformed the statistical analysis to determine the DEPs between the two groups. Next, we carried out a targeted proteomic approach (multiple reaction monitoring) with DEPs to achieve high-confident TTTS-associated AF proteins.
RESULTS:
A total of 103 AF proteins that were significantly altered in their abundances between donor and recipient fetuses. The majority of upregulated proteins identified in the recipient twins (including carbonic anhydrase 1, fibrinogen alpha chain, aminopeptidase N, alpha-fetoprotein, fibrinogen gamma chain, and basement membrane-specific heparan sulfate proteoglycan core protein) have been associated with cardiac or dermatologic disease, which is often seen in recipient twins as a result of volume overload. In contrast, proteins significantly upregulated in AF collected from donor twins (including IgGFc-binding protein, apolipoprotein C-I, complement C1q subcomponent subunit B, apolipoprotein C-III, apolipoprotein A-II, decorin, alpha-2-macroglobulin, apolipoprotein A-I, and fibronectin) were those previously shown to be associated with inflammation, ischemic cardiovascular complications or renal disease.
CONCLUSION
In this study, we identified proteomic biomarkers in AF collected from donor and recipient twins in pregnancies complicated by TTTS that appear to reflect underlying functional and pathophysiological challenges faced by each of the fetuses.