2.Establishment and drug susceptibility test of isoniazid resistant Mycobacterium smegmatis.
Ping-ping JIA ; Li-li ZHAO ; Xiao-yu LI ; Quan ZHANG ; Zhen-long LIU ; Xin WANG ; Li-yan YU ; Li-xun ZHAO ; Shan CEN
Acta Pharmaceutica Sinica 2011;46(4):377-382
With the emergence of drug resistant tuberculosis, it is very urgent to find novel anti-tuberculosis drugs, especially novel anti-drug-resistant tuberculosis drugs. Because of the slow growth and the need to work in a biosafty environment of Mycobacterium tuberculosis, the development of evaluation of drug effect is severely impeded. In order to solve these issues, non-pathogenic fast-growing Mycobacterium smegmatis is introduced as test organism. The inhA is one of a target of isoniazid (INH) overexpression or mutation of this gene in Mycobacterium tuberculosis conferring resistant to INH. A recombinant plasmid bearing inhA was constructed and electroporated into Mycobacterium smegmatis, using shuttle expression vector pMV261. Transformants were induced to express a protein of inhA, identified by SDS-PAGE. Results show that Mycobacterium smegmatis containing inhA plasmids exhibited 100-fold or greater increased resistance to INH, but it conferred no increased resistance to others first-line anti-tuberculosis drugs. Resazurin microtiter assay plate testing of Mycobacterium smegmatis susceptibility to drugs is a rapid, simple, and inexpensive method and could decrease color background of drugs by detecting fluorescence. It will be benefit for high-throughout screening of drugs of anti-isoniazid-resistant Mycobacteria.
Anti-Bacterial Agents
;
pharmacology
;
Antibiotics, Antitubercular
;
pharmacology
;
Antitubercular Agents
;
pharmacology
;
Bacterial Proteins
;
genetics
;
metabolism
;
Drug Resistance, Bacterial
;
Electroporation
;
Ethambutol
;
pharmacology
;
Isoniazid
;
pharmacology
;
Microbial Sensitivity Tests
;
Mycobacterium smegmatis
;
drug effects
;
genetics
;
metabolism
;
Oxidoreductases
;
genetics
;
metabolism
;
Plasmids
;
Rifampin
;
pharmacology
;
Streptomycin
;
pharmacology
3.Mutations in the embB Locus among Korean Clinical Isolates of Mycobacterium tuberculosis Resistant to Ethambutol .
Hye Young LEE ; Han Jung MYOUNG ; Hye Eun BANG ; Gill Han BAI ; Sang Jae KIM ; Joo Deuk KIM ; Sang Nae CHO
Yonsei Medical Journal 2002;43(1):59-64
Resistance of Mycobacterium tuberculosis to ethambutol (EMB) has been assigned to an operon, embCAB, which has been proposed to be a structural gene for mycobacterial arabinosyl transferases. Recently, genetic events resulting in structural mutations at embB have been proposed as major contributors to the EMB-resistance of isolates whose minimum inhibitory concentration (MIC) level is higher than 20 microgram/ml. On the contrary, isolates with a MIC level lower than 20 microgram/ml do not seem to contain any sequence alterations. In this study, in an effort to understand the role of embB mutations at a low-level of EMB resistance, we investigated the sequence polymorphisms of clinical isolates whose MIC levels are lower than 10 microgram/ml. Accordingly, the sequence alterations of a 312-bp region of the embB gene containing the 306th codon, which has been assigned as a hot-spot for EMB-resistance related mutations, were determined for 21 EMB-resistant and 5 EMB-susceptible clinical isolates. In brief, among 21 EMB- resistant isolates examined, 12 (57.1%) contained mutations in embB (10 at the 306th codon and 2 at other sites), and the remaining isolates 9 contained no mutations in any region of embB. The observed mutations included M306V, M306I, and M306L substitutions that have been reported previously. However, 3 were novel types, which included M306T, A313G and Y322C, D331Y double substitutions. On the other hand, all of the EMB-susceptible isolates were found to be free of mutations. In conclusion, our findings suggest that sequence polymorphism of embB may play a pivotal role in the EMB- resistance of M. tuberculosis.
Antitubercular Agents/*pharmacology
;
Chromosome Mapping
;
Drug Resistance, Bacterial
;
Ethambutol/*pharmacology
;
*Mutation
;
Mycobacterium tuberculosis/*drug effects/genetics
;
Pentosyltransferases/*genetics
;
Polymerase Chain Reaction
4.Detection and evaluation of the mutations of embB gene in ethambutol-susceptible and resistant Mycobacterium tuberculosis isolates from China.
Xue-Qiong WU ; Jian-Qin LIANG ; Jun-Xian ZHANG ; Yang LU ; Hong-Min LI ; Guang-Yu ZHANG ; Guo-Rui YAN ; Bei-Chuan DING
Chinese Medical Journal 2005;118(20):1739-1741
5.Action Mechanism of Ethambutol Tablets on Pulmonary Tuberculosis Rat Model Based on Janus Kinase/Signal Transducer and Activator of Transcription Signaling Pathway.
Jian-Jun LI ; Su-Fang WU ; Feng-Xi BAI
Acta Academiae Medicinae Sinicae 2022;44(4):555-562
Objective To explore the therapeutic effect of ethambutol tablets (EMB) on pulmonary tuberculosis (PTB) in rats and whether the action mechanism of EMB is related to Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway. Methods Sixty SD rats were assigned into a control group,a PTB group,a PTB+EMB group (30 mg/kg),and a PTB+EMB+Colivelin (JAK/STAT pathway activator) group (30 mg/kg+1 mg/kg) via the random number table method,with 15 rats in each group.The rats in other groups except the control group were injected with 0.2 ml of 5 mg/ml Mycobacterium tuberculosis suspension to establish the PTB model.After the modeling,the rats were administrated with corresponding drugs for 4 consecutive weeks (once a day).On days 1,14,and 28 of administration,the body weights of rats were measured and the Mycobacterium tuberculosis colonies were counted.Hematoxylin-eosin staining was carried out to detect the pathological changes in the lung tissue.Enzyme-linked immunosorbent assay was employed to measure the levels of interleukin(IL)-6,tumor necrosis factor-α (TNF-α),IL-1β,and interferon-γ (IFN-γ) in the serum.Flow cytometry was used to determine the levels of T lymphocyte subsets CD3+,CD4+,CD8+,and CD4+/CD8+.The 16S rRNA sequencing was performed to detect the relative abundance of the intestinal microorganisms.Western blotting was employed to determine the expression of the proteins in the JAK/STAT pathway. Results Compared with the control group,the modeling of PTB reduced the rat body weight (on days 14 and 28),increased Mycobacterium tuberculosis colonies,caused severe pathological changes in the lung tissue,and elevated the levels of IL-6,TNF-α,and IL-1β in serum and CD8+.Moreover,the modeling increased the relative abundance of Bacteroides,Peptococcus,Clostridium,Actinomyces,Lactobacillus,Verrucomicrobium,and Veillonella in the intestine,up-regulated the protein levels of phosphorylated JAK2 and phosphorylated STAT3 in the lung tissue,and lowered the levels of CD3+,CD4+,CD4+/CD8+,and IFN-γ levels (all P<0.001).Compared with the PTB group,PTB+EMB increased the rat body weight (on days 14 and 28),reduced Mycobacterium tuberculosis colonies,alleviated the pathological damage in lung tissue,lowered the levels of IL-6,TNF-α,and IL-1β in serum and CD8+.Moreover,the treatment decreased the relative abundance of Bacteroides,Peptococcus,Clostridium,Actinomyces,Lactobacillus,Verrucomicrobium,Veillonella in the intestine,down-regulated the protein levels of phosphorylated JAK2 and phosphorylated STAT3 in the lung tissue,and elevated the levels of CD3+,CD4+,CD4+/CD8+,and IFN-γ (all P<0.001).Colivelin weakened the alleviation effect of EMB on PTB (all P<0.001). Conclusion EMB can inhibit the JAK/STAT signaling pathway to alleviate the PTB in rat.
Animals
;
Body Weight
;
Ethambutol/pharmacology*
;
Interferon-gamma/pharmacology*
;
Interleukin-6/metabolism*
;
Janus Kinases/pharmacology*
;
Mycobacterium tuberculosis/metabolism*
;
RNA, Ribosomal, 16S
;
Rats
;
Rats, Sprague-Dawley
;
STAT Transcription Factors/pharmacology*
;
Signal Transduction
;
Tablets/pharmacology*
;
Tuberculosis, Pulmonary/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
6.Clinical value of the MeltPro MTB assays in detection of drug-resistant tuberculosis in paraffin-embedded tissues.
Jia Lu CHE ; Zi Chen LIU ; Kun LI ; Wei Li DU ; Dan ZHAO ; Jing MU ; Yu Jie DONG ; Nan Ying CHE
Chinese Journal of Pathology 2023;52(5):466-471
Objective: To evaluate the clinical value of the MeltPro MTB assays in the diagnosis of drug-resistant tuberculosis. Methods: A cross-sectional study design was used to retrospectively collect all 4 551 patients with confirmed tuberculosis between January 2018 and December 2019 at Beijing Chest Hospital, Capital Medical University. Phenotypic drug sensitivity test and GeneXpert MTB/RIF (hereafter referred to as "Xpert") assay were used as gold standards to analyze the accuracy of the probe melting curve method. The clinical value of this technique was also evaluated as a complementary method to conventional assays of drug resistance to increase the detective rate of drug-resistant tuberculosis. Results: By taking the phenotypic drug susceptibility test as the gold standard, the sensitivity of the MeltPro MTB assays to detect resistance to rifampicin, isoniazid, ethambutol and fluoroquinolone was 14/15, 95.7%(22/23), 2/4 and 8/9,respectively; and the specificity was 92.0%(115/125), 93.2%(109/117), 90.4%(123/136) and 93.9%(123/131),respectively; the overall concordance rate was 92.1%(95%CI:89.6%-94.1%),and the Kappa value of the consistency test was 0.63(95%CI:0.55-0.72).By taking the Xpert test results as the reference, the sensitivity of this technology to the detection of rifampicin resistance was 93.6%(44/47), the specificity was100%(310/310), the concordance rate was 99.2%(95%CI:97.6%-99.7%), and the Kappa value of the consistency test was 0.96(95%CI:0.93-0.99). The MeltPro MTB assays had been used in 4 551 confirmed patients; the proportion of patients who obtained effective drug resistance results increased from 83.3% to 87.8%(P<0.01); and detection rate of rifampicin, isoniazid, ethambutol, fluoroquinolone resistance, multidrug and pre-extensive drug resistance cases were increased by 3.2%, 14.7%, 22.2%, 13.7%, 11.2% and 12.5%, respectively. Conclusion: The MeltPro MTB assays show satisfactory accuracy in the diagnosis of drug-resistant tuberculosis. This molecular pathological test is an effective complementary method in improving test positivity of drug-resistant tuberculosis.
Humans
;
Rifampin/therapeutic use*
;
Antibiotics, Antitubercular/therapeutic use*
;
Mycobacterium tuberculosis
;
Ethambutol/pharmacology*
;
Isoniazid/pharmacology*
;
Paraffin Embedding
;
Retrospective Studies
;
Cross-Sectional Studies
;
Drug Resistance, Bacterial
;
Sensitivity and Specificity
;
Tuberculosis, Multidrug-Resistant/drug therapy*
7.Anti-hyperuricemia activity and its mechanism of flavonoid extract from saffron floral bio-residues.
Na CHEN ; Hua LI ; Jing MENG ; Yi-Fei YANG ; Bin YANG
China Journal of Chinese Materia Medica 2023;48(1):148-159
A hyperuricemic rat model induced by adenine and ethambutol was established to investigate the anti-hyperuricemia activity and its mechanism of the flavonoid extract from saffron floral bio-residues. Sixty-seven SD rats were randomly divided into control group, model group, positive control group, and flavonoid extract groups(with 3 doses), respectively, and each group contained 11 or 12 rats. The hyperuricemic model was established by continuous oral administration of adenine(100 mg·kg~(-1)) and ethambutol(250 mg·kg~(-1)) for 7 days. At the same time, the positive control group was given allopurinol(20 mg·kg~(-1) per day) and the flavonoid extract groups were given the flavonoid extract at doses of 340, 170 and 85 mg·kg~(-1) per day, respectively. On day 8, rat serum, liver, kidney, and intestinal tissues were collected, and the levels of uric acid in serum and tissue, the xanthine oxidase activities and antioxi-dant activities in serum and liver were evaluated, and the kidney histopathology was explored. In addition, an untargeted serum metabolomics study was performed. According to the results, the flavonoid extract effectively reduced the uric acid levels in serum, kidney and ileum and inhibited the xanthine oxidase activities and elevated the antioxidant activities of serum and liver in hyperuricemic rat. At the same time, it reduced the levels of inflammation factors in kidney and protected renal function. Moreover, 68 differential metabolites of hyperuricemic rats were screened and most of which were lipids and amino acids. The flavonoid extract significantly retrieved the levels of differential metabolites in hyperuricemic rats, such as SM(d18:1/20:0), PC[18:0/18:2(92,12Z)], palmitic acid and citrulline, possibly through the following three pathways, i.e., arginine biosynthesis, glycine, serine and threonine metabolism, and histidine metabolism. To sum up, the flavonoid extract of saffron floral bio-residues lowered the uric acid level, increased the antioxidant activity, and alleviated inflammatory symptoms of hyperuricemic rats, which may be related to its inhibition of xanthine oxidase activity and regulation of serum lipids and amino acids metabolism.
Rats
;
Animals
;
Flavonoids/pharmacology*
;
Uric Acid
;
Crocus
;
Xanthine Oxidase
;
Ethambutol/adverse effects*
;
Rats, Sprague-Dawley
;
Hyperuricemia/drug therapy*
;
Kidney
;
Antioxidants/pharmacology*
;
Plant Extracts/adverse effects*
;
Amino Acids
;
Adenine/adverse effects*
;
Lipids
8.Study on the epidemiology and determinants of drug-resistant tuberculosis in northern rural area of Jiangsu province.
Ben-fu YANG ; Biao XU ; Wei-li JIANG ; Pei-yuan ZHOU ; Qing-wu JIANG
Chinese Journal of Epidemiology 2004;25(7):582-585
OBJECTIVETo understand the determinants and epidemiology of drug-resistant tuberculosis (TB) in rural area.
METHODSAll the diagnosed TB patients in a county with directly observed treatment (DOTS) short-course program in 2002 and a sample of patients in another county without DOTS program located in northern Jiangsu province were surveyed with questionnaires. Drug susceptibility testing (DST) for positive cultures were performed by standardized proportion method. Univariable analysis and multivariate nonconditional logistic regression modeling were applied for data analysis.
RESULTSAmong the 152 patients with DST results, 32.9% of the cases showed resistance to at least one of the first-line anti-tuberculosis drugs with 26.3% to isoniazid, 18.4% to rifampin and 17.1% to both isoniazid and rifampin respectively. Previous treatments for TB and residence in the county without DOTS program were independent risk factors for isoniazid and rifampin resistance. TB patients showing indifferent to their health and delayed health seeking for more than 1 month were more likely to have rifampin resistance. Independent predictors of multidrug-resistant TB would include delayed health seeking for more than 1 month (OR = 4.66, 95% CI: 1.26 - 17.24), residing in the county without a DOTS program (OR = 3.01, 95% CI: 1.10 - 8.22), indifference to their health condition (OR = 5.13, 95% CI: 1.06 - 24.90) and suffering from chronic diseases (OR = 0.22, 95% CI: 0.05 - 0.87).
CONCLUSIONDrug-resistant TB was quite serious in this rural areas, mainly associated with man-made factors but partly due to the availability of the transmission.
Adult ; Antitubercular Agents ; pharmacology ; China ; epidemiology ; Drug Resistance, Microbial ; Drug Resistance, Multiple ; Ethambutol ; therapeutic use ; Humans ; Incidence ; Isoniazid ; therapeutic use ; Logistic Models ; Male ; Microbial Sensitivity Tests ; Middle Aged ; Rifampin ; therapeutic use ; Rural Health ; Streptomycin ; therapeutic use ; Surveys and Questionnaires ; Tuberculosis, Pulmonary ; epidemiology ; microbiology