1.A priming role of local estrogen on exogenous estrogen-mediated synaptic plasticity and neuroprotection.
Siriporn CHAMNIANSAWAT ; Sukumal CHONGTHAMMAKUN
Experimental & Molecular Medicine 2012;44(6):403-411
The localization of estrogen (E2) has been clearly shown in hippocampus, called local hippocampal E2. It enhanced neuronal synaptic plasticity and protected neuron form cerebral ischemia, similar to those effects of exogenous E2. However, the interactive function of hippocampal and exogenous E2 on synaptic plasticity activation and neuroprotection is still elusive. By using hippocampal H19-7 cells, we demonstrated the local hippocampal E2 that totally suppressed by aromatase inhibitor anastrozole. Anastrozole also suppressed estrogen receptor (ER)beta, but not ERalpha, expression. Specific agonist of ERalpha (PPT) and ERbeta (DPN) restored ERbeta expression in anastrozole-treated cells. In combinatorial treatment with anastrozole and phosphoinositide kinase-3 (PI-3K) signaling inhibitor wortmannin, PPT could not improve hippocampal ERbeta expression. On the other hand, DPN induced basal ERbeta translocalization into nucleus of anastrozole-treated cells. Exogenous E2 increased synaptic plasticity markers expression in H19-7 cells. However, exogenous E2 could not enhance synaptic plasticity in anastrozole-treated group. Exogenous E2 also increased cell viability and B-cell lymphoma 2 (Bcl2) expression in H2O2-treated cells. In combined treatment of anastrozole and H2O2, exogenous E2 failed to enhance cell viability and Bcl2 expression in hippocampal H19-7 cells. Our results provided the evidence of the priming role of local hippocampal E2 on exogenous E2-enhanced synaptic plasticity and viability of hippocampal neurons.
Androstadienes/pharmacology
;
Animals
;
Aromatase Inhibitors/pharmacology
;
Cell Line
;
Cell Survival/drug effects
;
Estrogen Receptor alpha/agonists/metabolism
;
Estrogen Receptor beta/agonists/metabolism
;
Estrogens/*metabolism/pharmacology
;
Hippocampus/cytology/*metabolism
;
Hydrogen Peroxide/pharmacology
;
Nervous System/*drug effects
;
Neuronal Plasticity/*drug effects
;
*Neuroprotective Agents
;
Nitriles/pharmacology
;
Phosphatidylinositol 3-Kinase/antagonists & inhibitors
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis
;
Rats
;
Triazoles/pharmacology
2.Antitumor activity of spinasterol isolated from Pueraria roots.
Gook Che JEON ; Myoung Soon PARK ; Do Young YOON ; Chul Ho SHIN ; Hong Sig SIN ; Soo Jong UM
Experimental & Molecular Medicine 2005;37(2):111-120
We purified phytoestrogens from Pueraria root (Pueraria mirifica from Thailand and Pueraria lobata from Korea), which is used as a rejuvenating folk medicine in Thailand and China. Dried, powdered plant material was extracted with 100% ethanol and further separated by concentration, filtration, and thin layer silica gel chromatography. Using the fractions obtained during separation, we first investigated their cytotoxicity in several cancer cell lines from various tissues. The ethanol-extracted components (PE1, PE4) had significant antiproliferative effects on breast cancer cell lines, including MCF-7, ZR-75-1, MDA-MB-231, SK-BR-3, and Hs578T. Second, we compared these results with the cytotoxic effects of known flavonoids, sterols, and coumarins from Pueraria root. The known compounds were not as effective, and occurred in a different polarity region on HPLC. Third, further separation resulted in the isolation of eight different components (Sub PE-A to -H). One of these, PE-D, affected the growth of some breast cancer cell lines (MCF-7, MDA-MB-231) in a dose- and time-dependent manner, as well as the growth of ovarian (2774) and cervical cancer cells (HeLa). Finally, a transfection assay showed that this component had an estrogenic effect similar to 17beta-estradiol, which activates both estrogen receptor a (ER alpha) and ER beta. The NMR analysis determined that spinasterol (stigmasta-7, 22-dien-3beta-ol) is an active cytotoxic component of Pueraria root.
Antineoplastic Agents/isolation & purification/*pharmacology
;
Chromatography, High Pressure Liquid
;
Estrogen Receptor alpha/agonists
;
Estrogen Receptor beta/agonists
;
Female
;
Humans
;
Plant Preparations/therapeutic use
;
Plant Roots/*chemistry
;
Pueraria/*chemistry
;
Research Support, Non-U.S. Gov't
;
Stigmasterol/*analogs & derivatives/isolation & purification/pharmacology
;
Transfection
;
Tumor Cells, Cultured
3.Establishment of a reporter gene-based cell screening model for discovering new agonists of estrogen receptor beta subtype.
Li-min CHEN ; Qiu-jun LÜ ; Inoue SATOSHI ; Guang-xing BIAN ; Zhen-hua CHEN ; Li-qing WEN
Acta Pharmaceutica Sinica 2006;41(8):721-726
AIMTo establish a sensitive and efficient reporter gene-based screening model for finding agonists of estrogen receptor beta subtype.
METHODSA recombinant vector pTAL-ERE-SEAP was constructed by inserting a synthetic sequence composed of five estrogen responsive elements in front of promoter of pTAL-SEAP vector. pTAL-ERE-SEAP was then transfected into human embryonic kidney (HEK293) cells. G418 (200 microg x mL(-1)) was added to select positive clones that can be induced by E2 to express reporter gene SEAP. The speciality was tested by several ligands of relative nuclear receptors of the same family. The stability of the model, the time-effect relationship, the dose-response relationship, and the immunocytochemistry staining of ERbeta expression after transfection were observed. 2 622 compounds were screened by using this model.
RESULTSStably transfected clones were obtained. The expression levels of reporter gene SEAP of positive clones was induced by E2 in a dose-response and time-effect relationship manners. The Z' factor value was 0.7. The expression levels of dexamethasone and other ligands were low. The result of immunocytochemistry staining showed the expression of ERbeta. E2 had no proliferating effects on stably transfected clones.
CONCLUSIONStably transfected positive clones transfected with recombinant vector pTAL-ERE-SEAP were obtained. The positive clones may be used to screen for agonists of estrogen receptor beta subtype by measurement of luminescent value of expressed SEAP in wells of microlitre plate.
Alkaline Phosphatase ; genetics ; metabolism ; Cell Line ; Estradiol ; pharmacology ; Estrogen Receptor beta ; agonists ; genetics ; metabolism ; Gene Expression Regulation ; drug effects ; Genetic Vectors ; Humans ; Immunohistochemistry ; Promoter Regions, Genetic ; genetics ; Recombinant Fusion Proteins ; genetics ; metabolism ; Response Elements ; genetics ; Transfection