1.Prokaryotic expression, purification and immunogenicity of SARS-CoV-2 omicron variant nucleocapsid protein.
Zewen TU ; Quansheng WANG ; Shiguo LIU ; Haosen LIU ; Chunyan ZENG ; Juanjuan XIE ; Mingzhi LI ; Jingcai LI ; Min WANG ; Shiqi WENG ; Lumei KANG ; Lingbao KONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):735-743
Objective The study aims to investigate the immunological functions of the nucleocapsid (N) protein of the novel coronavirus Omicron (BA.1, BA.2) and evaluate the differences among different N proteins of mutant strains in immunogenicity. Methods By aligning sequences, the mutation sites of the Omicron (BA.1, BA.2) N protein relative to prototype strain of the novel coronavirus (Wuhan-Hu-1) were determined. The pET-28a-N-Wuhan-Hu-1 plasmid was used as template to construct pET-28a-BA.1/BA.2-N through single point mutation or homologous recombination. The three kinds of N protein were expressed in prokaryotic system, purified through Ni-NTA affinity chromatography, and then immunized into mice. The titer and reactivity of the polyclonal antibody, as well as the expression level of IL-1β and IFN-γ in mouse spleen cells, were detected using indirect ELISA and Western blot assay. Results The constructed prokaryotic expression plasmids were successfully used to express the Wuhan-Hu-1 N, BA.1 N, and BA.2 N proteins in E.coli BL21(DE3) at 37 DegreesCelsius for 4 hours. The indirect ELISA test showed that the titers of polyclonal antibody prepared by three N proteins were all 1:51 200. All three N proteins can increase the expression of IFN-γ and IL-1β cytokines, but the effect of Omicron N protein in activing two cytokines was more obvious than that of Wuhan-Hu-1 N protein. Conclusion The study obtained three new coronavirus N proteins and polyclonal antibodies, and confirmed that mutations in the amino acid sites of the N protein can affect its immunogenicity. This provides a basis for developing rapid diagnostic methods targeting N protein of different novel coronavirus variants.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Nucleocapsid Proteins/isolation & purification*
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Mice, Inbred BALB C
;
Interferon-gamma/metabolism*
;
Interleukin-1beta/metabolism*
;
Female
;
Escherichia coli/metabolism*
;
Mutation
;
Humans
2.Expression and enzymatic characterization of a chitosanase with tolerance to a wide range of pH from Bacillus atrophaeus.
Wenjuan DU ; Awagul TURSUN ; Zhiqin DONG ; Huijuan MA ; Zhenghai MA
Chinese Journal of Biotechnology 2025;41(1):352-362
To screen and identify a chitosanase with high stability, we cloned the chitosanase gene from Bacillus atrophaeus with a high protease yield from the barren saline-alkali soil and expressed this gene in Escherichia coli. The expressed chitosanase of B. atrophaeus (BA-CSN) was purified by nickel-affinity column chromatography. The properties including optimal temperature, optimal pH, substrate specificity, and kinetic parameters of BA-CSN were characterized. The results showed that BA-CSN had the molecular weight of 31.13 kDa, the optimal temperature of 55 ℃, the optimal pH 5.5, and good stability at temperatures below 45 ℃ and pH 4.0-9.0. BA-CSN also had good stability within 4 h of pH 3.0 and 10.0, be activated by K+, Na+, Mn2+, Ca2+, Mg2+, and Co2+, (especially by Mn2+), and be inhibited by Fe3+, Cu2+, and Ag+. BA-CSN showcased the highest relative activity in the hydrolysis of colloidal chitosan, and it had good hydrolysis ability for colloidal chitin. Under the optimal catalytic conditions, BA-CSN demonstrated the Michaelis constant Km and maximum reaction rate Vmax of 9.94 mg/mL and 26.624 μmoL/(mL·min), respectively, for colloidal chitosan. In short, BA-CSN has strong tolerance to acids and alkali, possessing broad industrial application prospects.
Bacillus/genetics*
;
Hydrogen-Ion Concentration
;
Escherichia coli/metabolism*
;
Glycoside Hydrolases/biosynthesis*
;
Substrate Specificity
;
Enzyme Stability
;
Chitosan/metabolism*
;
Temperature
;
Kinetics
;
Cloning, Molecular
;
Bacterial Proteins/biosynthesis*
;
Recombinant Proteins/genetics*
3.Construction and optimization of 1, 4-butanediamine biosensor based on transcriptional regulator PuuR.
Junjie LIU ; Minmin JIANG ; Tong SUN ; Xiangxiang SUN ; Yongcan ZHAO ; Mingxia GU ; Fuping LU ; Ming LI
Chinese Journal of Biotechnology 2025;41(1):437-447
Biosensors have become powerful tools for real-time monitoring of specific small molecules and precise control of gene expression in biological systems. High-throughput sensors for 1, 4-butanediamine biosynthesis can greatly improve the screening efficiency of high-yielding 1, 4-butanediamine strains. However, the strategies for adapting the characteristics of biosensors are still rarely studied, which limits the applicability of 1, 4-butanediamine biosensors. In this paper, we propose the development of a 1, 4-butanediamine biosensor based on the transcriptional regulator PuuR, whose homologous operator puuO is installed in the constitutive promoter PgapA of Escherichia coli to control the expression of the downstream superfolder green fluorescent protein (sfGFP) as the reporter protein. Finally, the biosensor showed a stable linear relationship between the GFP/OD600 value and the concentration of 1, 4-butanediamine when the concentration of 1, 4-butanediamine was 0-50 mmol/L. The promoters with different strengths in the E. coli genome were used to modify the 1, 4-butanediamine biosensor, and the functional properties of the PuuR-based 1, 4-butanediamine biosensor were explored and improved, which laid the groundwork for high-throughput screening of engineered strains highly producing 1, 4-butanediamine.
Biosensing Techniques/methods*
;
Escherichia coli/metabolism*
;
Promoter Regions, Genetic/genetics*
;
Green Fluorescent Proteins/metabolism*
;
Transcription Factors/genetics*
;
Escherichia coli Proteins/genetics*
;
Diamines/metabolism*
;
Gene Expression Regulation, Bacterial
4.A flavin-containing monooxygenase from Schizosaccharomyces pombe: characterization and application in the synthesis of S-methyl-L-cysteine sulfoxide.
Mengka LIAN ; Zhaolin SONG ; Wenjing GAO ; Gang ZHU ; Mengjun DONG ; Yu LI ; Yihan LIU ; Fenghua WANG ; Fuping LU
Chinese Journal of Biotechnology 2025;41(1):474-485
S-methyl-L-cysteine sulfoxide (SMCO) is a non-protein sulfur-containing amino acid with a variety of functions. There are few reports on the enzymes catalyzing the biosynthesis of SMCO from S-methyl-L-cysteine (SMC). In this study, the flavin-containing monooxygenase gene derived from Schizosaccharomyces pombe (spfmo) was heterologously expressed in Escherichia coli BL21(DE3) and the enzymatic properties of the expressed protein were analyzed. The optimum catalytic conditions of the recombinant SpFMO were 30 ℃ and pH 8.0, under which the enzyme activity reached 72.77 U/g. An appropriate amount of Mg2+ improved the enzyme activity. The enzyme kinetic analysis showed that the Km and kcat/Km of SpFMO on the substrate SMC were 23.89 μmol/L and 61.71 L/(min·mmol), respectively. Under the optimal reaction conditions, the yield of SMCO synthesized from SMC catalyzed by SpFMO was 12.31% within 9 h. This study provides reference for the enzymatic synthesis of SMCO.
Schizosaccharomyces/genetics*
;
Escherichia coli/metabolism*
;
Recombinant Proteins/metabolism*
;
Cysteine/biosynthesis*
;
Mixed Function Oxygenases/metabolism*
;
Schizosaccharomyces pombe Proteins/metabolism*
;
Oxygenases/metabolism*
;
Kinetics
5.Optimization of promoter screening for heterologous expression of carbonic anhydrase and characterization of its enzymatic properties and carbon sequestration performance.
Dandan YAO ; Yunhui LI ; Xingjia FU ; Hui WANG ; Yun LIU
Chinese Journal of Biotechnology 2025;41(4):1588-1604
In this study, high-throughput promoter screening was employed to optimize the heterologous expression of Mesorhizobium loti carbonic anhydrase (MlCA) in order to reduce the costs associated with carbon capture and storage (CCS). To simplify the complexity of traditional vectors, a fusion protein expression system was constructed using superfolder green fluorescent protein (sfGFP) and MlCA. The synthetic promoter library in Escherichia coli was utilized for efficient one-step screening. Based on fluorescence intensity on agar plates, a total of 143 monoclonal colonies were identified, forming a library with varying expression levels. The top four recombinants with the highest fluorescence intensity were selected, among which MlCA driven by the promoter 342042/+ exhibited the highest enzymatic activity, with a specific activity of the 34.6 Wilbur-Anderson units (WAU)/mg. Optimization experiments revealed that MlCA exhibited the best performance when cultured for 4 days under pH 7.0 and 40 ℃ conditions. The Michaelis constant (Km·hdy) and maximum reaction rate (Vmax·hdy) for CO2 hydration were determined to be 62.46 mmol/L and 0.164 mmol/(s·L), respectively. For esterase hydrolysis, MlCA showed the Km and Vmax of 639.8 mmol/L and 0.035 mmol/(s·L), respectively. MlCA accelerated the CO2 hydration process, promoting CO2 mineralized into CaCO3 within 9 min at low pH and room temperature conditions. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses confirmed that the precipitated product was calcite. This study provides a low-cost and environmentally friendly alternative for future CCS applications.
Carbonic Anhydrases/biosynthesis*
;
Promoter Regions, Genetic/genetics*
;
Escherichia coli/metabolism*
;
Carbon Sequestration
;
Carbon Dioxide/metabolism*
;
Green Fluorescent Proteins/metabolism*
6.Recombinant expression of Sphingobium yanoikuyae esterase SyEst870 capable of degrading carbamate pesticides.
Xiaoqian XIE ; Yin FENG ; Yuanyuan ZHOU ; Xin YAN ; Xiaoqin YUAN ; Wuxia QIU ; Xinfang MAO ; Zhongyuan LIU
Chinese Journal of Biotechnology 2025;41(4):1605-1620
Carbamate pesticides, a new type of broad-spectrum pesticides for controlling pests, mites, and weeds, are developed to address the shortcomings of organochlorine and organophosphorus pesticides. Their widespread use and slow degradation have led to environmental pollution, causing damage to ecosystems and human health. Managing pesticide residues is a pressing issue in the current environmental protection. This study aims to investigate the expression of SyEst870, a member of the SGNH/GDSL hydrolase family in Sphingobium yanoikuyae, in a prokaryotic system and evaluate the ability of the recombinant protein to degrade carbamate pesticides. The prokaryotic expression vector pET-32a-SyEst870 was constructed and transformed into the Escherichia coli BL21 for heterologous expression. The purified protein was studied in terms of enzyme activity and effects of temperature, pH, and metal ions on the enzyme activity, with p-nitrophenol acetate as the substrate and based on the standard curve of p-nitrophenol. LC-MS (liquid chromatography-mass spectrometry) was employed to examine the degradation effects of SyEst870 on carbaryl, metolcarb, and isoprocarb. GC-MS (gas chromatography-mass spectrometry) was employed to detect the degradation products of SyEst870 for the three pesticides. The soluble protein SyEst870 was successfully obtained through the heterologous expression in Escherichia coli, which yielded an enzyme with the activity of 677.5 U after affinity chromatography. SyEst870 exhibited degradation rates of 82.34%, 84.43%, and 92.87% for carbaryl, metolcarb, and isoprocarb, respectively, at an initial concentration of 100 mg/L within 24 h at 30 ℃ and pH 7.0. The primary degradation products of carbaryl were identified as α-naphthol and methyl isocyanate. Metolcarb was mainly degraded into m-cresol and methyl isocyanate, and isoprocarb was mainly degraded into 2-isopropylphenol and methyl isocyanate. Compared with the half-life of carbamate pesticides in the natural environment, which ranges from a few days to several weeks, the recombinant protein SyEst870 can rapidly eliminate the residues of carbamate pesticides. This study lays a foundation for addressing pesticide residues in the environment and in fruits and vegetables.
Escherichia coli/metabolism*
;
Sphingomonadaceae/genetics*
;
Recombinant Proteins/metabolism*
;
Biodegradation, Environmental
;
Esterases/metabolism*
;
Pesticides/isolation & purification*
;
Carbamates/isolation & purification*
7.Laser-assisted spatiotemporal control of Noxa expression in engineering bacteria for treating tumors.
Tingfang GAN ; Naiming ZHENG ; Huifeng LI ; Jinrui XU ; Ningning WU ; Lixin MA ; Yunhong HU
Chinese Journal of Biotechnology 2025;41(8):3199-3213
Bacterial therapy has attracted increasing attention due to its special mechanism and abundant applications. With the flourishing development of synthetic biology, therapeutic genes have been introduced into engineering bacteria to improve their antitumor efficacy. However, it is difficult to spatiotemporally control the expression of these therapeutic genes at the tumor site in vivo, thereby considerably limiting the application of engineered bacteria in tumor treatment. To resolve this problem, we constructed a temperature-responsive bacterial strain capable of triggering the expression of exogenous genes in a laser-controllable way. Noxa, a pro-apoptotic protein, is chosen to test the expression of exogenous protein and its anti-tumor effect in engineered bacteria upon laser irradiation. Firstly, Noxa was fused to the C-terminus of the bacterial outer membrane protein cytolysin A (ClyA), and then the recombinant gene fragment ClyA-Noxa was inserted into the temperature-sensitive plasmid pBV220 and the recombinant plasmid was transformed into non-pathogenic Escherichia coli MG1655. Thus, we constructed the engineering strain (TRB@Noxa) that could express Noxa on the bacterial surface. TRB@Noxa could target and colonize the tumor tissue without causing notable host toxicity. The bacterial infection triggered thrombosis in the tumor tissue, resulting in the darkness of tumor sites. In a xenograft mouse tumor model, our strategy demonstrated precise tumor targeting and strong tumor inhibition. In conclusion, we successfully constructed a new engineering bacterial strain TRB@Noxa. TRB@Noxa combined with photothermal therapy could arrest tumor growth in the absence of photosensitizers, which represents an appealing method for antitumor therapy in the future.
Escherichia coli/radiation effects*
;
Animals
;
Humans
;
Lasers
;
Mice
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
Neoplasms/therapy*
;
Genetic Engineering
;
Cell Line, Tumor
;
Escherichia coli Proteins/genetics*
8.Protein engineering for the modification of a L-amino acid deaminase for efficient synthesis of phenylpyruvic acid.
Xuanping SHI ; Yue WANG ; Zhina QIAO ; Jiajia YOU ; Zhiming RAO
Chinese Journal of Biotechnology 2025;41(9):3521-3536
Phenylpyruvic acid (PPA) is used as a food and feed additive and has a wide range of applications in the pharmaceutical, chemical and other fields. At present, PPA is mainly produced by chemical synthesis. With the green transformation of the manufacturing industry, biotransformation will be a good alternative for PPA production. The L-amino acid deaminase (PmiLAAD) from Proteus mirabilis has been widely studied for the production of PPA. However, the low yield limits its industrial production. To further enhance the production of PPA and better meet industrial demands, a more efficient synthesis method for PPA was established. In this study, PmiLAAD was heterologously expressed in Escherichia coli. Subsequently, a colorimetric reaction method was established to screen the strains with high PPA production. The semi-rational design of PmiLAAD was carried out, and the obtained triple-site mutant V18 (V437I/S93C/E417A) showed a 35% increase in catalytic activity compared with the wild type. Meanwhile, the effect of N-terminal truncation on the catalytic activity of the V18 mutant was investigated. After the optimization of the whole-cell conditions for the obtained mutant V18-N7, fed-batch conversion was carried out in a 5-L fermenter, and 44.13 g/L of PPA was synthesized with a conversion rate of 88%, which showed certain potential for industrial application. This study lays foundation for the industrial production of phenylpyruvic acid and also offers insights into the biosynthesis of other chemicals.
Escherichia coli/metabolism*
;
Proteus mirabilis/genetics*
;
Phenylpyruvic Acids/metabolism*
;
Protein Engineering/methods*
;
Recombinant Proteins/biosynthesis*
;
Bacterial Proteins/metabolism*
9.Identification, characterization, substrate binding mode prediction, and modification of a novel amidohydrolase from Microbulbifer thermotolerans.
Nana XU ; Mingzhu YAN ; Hao WANG ; Xiao LIANG ; Weidong LIU ; Huimin QIN ; Jian GAO
Chinese Journal of Biotechnology 2025;41(9):3567-3578
Ochratoxin A (OTA) is ubiquitous in the food and feed fields. It has strong hepatotoxicity and nephrotoxicity, seriously threatening the health of humans and animals. Enzymatic degradation of mycotoxins is considered to be a promising method to control mycotoxin contaminations. In this study, a new ochratoxin A amidohydrolase from Microbulbifer thermotolerans (MiADH) was obtained. After heterologous expression in Escherichia coli and purification, the recombinant protein was studied regarding the hydrolysis activity, hydrolysis products, enzymatic properties, and substrate binding mode. MiADH can degrade OTA into ochratoxin α (OTα) and phenylalanine, demonstrating a detoxifying ability. It demonstrated the best performance at 70 ℃ and pH 8.0, and Cu2+ had the strongest inhibitory effect on the activity of MiADH. MiADH with good thermal stability exhibited huge potential for industrial application. Rational design guided by three-dimensional structural models and substrate docking analysis revealed the important amino acids affecting substrate binding and obtained multiple mutants with improved activity. Among these mutants, V324A had the highest activity, which was 4.2-fold that of the wild type. The identification of MiADH enriches the ochratoxin A degradation enzyme library and provides a new candidate enzyme for the biological detoxification of ochratoxin A in the food and feed industry.
Amidohydrolases/chemistry*
;
Ochratoxins/metabolism*
;
Substrate Specificity
;
Escherichia coli/metabolism*
;
Recombinant Proteins/metabolism*
;
Actinomycetales/genetics*
10.Bioinformatics, expression, purification, and inflammation-inducing effect of Mycoplasma genitalium GroEL protein.
Li CHEN ; Xiaoling SU ; Haodang LUO ; Jingyun WANG ; Daoyong LIAO ; Tian GAN ; Jianwei YU ; Jun HE
Chinese Journal of Biotechnology 2024;40(11):4084-4097
To preliminarily understand the pathogenic mechanism of Mycoplasma genitalium (Mg) GroEL protein, we used bioinformatics tools to predict the structure and function of Mg GroEL protein and then constructed the recombinant plasmid pET-28a-GroEL. The protein expression was induced by 0.2 mmol/L IPTG, and the expressed protein was purified by Ni-iminodicitic acid (IDA) column affinity. Tohoku Hospital Pediatrics-1 (THP-1) cells were exposed to 2 μg/mL Mg rGroEL. The levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the cell supernatant were measured by ELISA, and that of IL-6 was measured by an automatic chemiluminescence instrument. The activation of the nuclear factor-kappa B (NF-κB) signaling pathway was visualized by immunofluorescence and Western blotting. The results showed that Mg GroEL was a stable hydrophilic protein composed of 543 amino acid residues, with the relative molecular mass of 58.44 kDa, an isoelectric point of 5.68, and a molecular formula of C2568H4300N700O825S8. The secondary structure was mainly composed of α-helices and random coils. Mg GroEL contained 12 B-cell dominant epitopes and 10 T-cell dominant epitopes. It exhibited high homology with the GroEL proteins from Mycoplasma pneumoniae, M. agalactiae, M. arthritidis, M. hyopneumoniae, and M. bovis. Mg rGroEL activated the NF-κB signaling pathway and promoted the secretion of IL-1β, IL-6, and TNF-α in THP-1 cells. These results suggest that Mg GroEL exhibits substantial antigenicity and possesses the capability of triggering inflammation in host cells. This study establishes a theoretical basis for future investigations pertaining to the role and pathogenic mechanisms of Mg GroEL.
Mycoplasma genitalium/metabolism*
;
Chaperonin 60/metabolism*
;
Computational Biology
;
Bacterial Proteins/genetics*
;
Humans
;
NF-kappa B/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-1beta/genetics*
;
Inflammation
;
Interleukin-6/genetics*
;
Recombinant Proteins/genetics*
;
THP-1 Cells
;
Signal Transduction
;
Escherichia coli/metabolism*

Result Analysis
Print
Save
E-mail