1.Enhanced production of shikimic acid using a multi-gene co-expression system in Escherichia coli.
Xiang-Lei LIU ; Jun LIN ; Hai-Feng HU ; Bin ZHOU ; Bao-Quan ZHU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(4):286-293
Shikimic acid (SA) is the key synthetic material for the chemical synthesis of Oseltamivir, which is prescribed as the front-line treatment for serious cases of influenza. Multi-gene expression vector can be used for expressing the plurality of the genes in one plasmid, so it is widely applied to increase the yield of metabolites. In the present study, on the basis of a shikimate kinase genetic defect strain Escherichia coli BL21 (ΔaroL/aroK, DE3), the key enzyme genes aroG, aroB, tktA and aroE of SA pathway were co-expressed and compared systematically by constructing a series of multi-gene expression vectors. The results showed that different gene co-expression combinations (two, three or four genes) or gene orders had different effects on the production of SA. SA production of the recombinant BL21-GBAE reached to 886.38 mg·L(-1), which was 17-fold (P < 0.05) of the parent strain BL21 (ΔaroL/aroK, DE3).
Escherichia coli
;
enzymology
;
genetics
;
metabolism
;
Escherichia coli Proteins
;
genetics
;
metabolism
;
Plasmids
;
genetics
;
metabolism
;
Shikimic Acid
;
metabolism
2.Functional characterization of SsNES responsible for nerolidol biosynthesis in Senecio scandens.
Qin-Qin SHEN ; Li-Ping WANG ; Jin LIANG ; Li-Jun LIU ; Qiang WANG
China Journal of Chinese Materia Medica 2019;44(7):1334-1340
A short terpene synthase gene was obtained by screening the transcriptome data of Senecio scandens. The phylogenetic tree and sequence alignment putatively identified this gene as a nerolidol synthase gene, named SsNES(GenBank MH518312). Protein homology modeling indicated that SsNES contained a complete conserved domain and folded correctly. SsNES was cloned and successfully expressed in Escherichia coli as soluble protein. The biochemical function of SsNES was characterized by E. coli metabolic engineering, which showed that SsNES catalyzed formation of trans-nerolidol with(E, E)-farnesyl diphosphate as the substrate. Nerolidol was also detected in stems and leaves of S. scandens, indicating that SsNES might act as the nerolidol synthase in plant. RT-PCR analysis indicated that SsNES was mainly expressed in stem, flowers and leaves, and no expression was observed in roots. After the treatment of SA, MeJA or Ala, SsNES was induced significantly at 6 h, indicating involvement in the defense response of S. scandens. The identification of SsNES not only clarified biosynthesis of nerolidol in S. scandens, but also provided diversity of sesquiterpene synthase, as well as theoretical basis for disease and pest defense mediated by the terpene metabolites.
Escherichia coli
;
Genes, Plant
;
Phylogeny
;
Senecio
;
enzymology
;
Sesquiterpenes
;
metabolism
3.The expression of phenylalanine hydroxylase in the brain of ragworm Neanthes japonica (Polychaeta, Annelida).
Guimin REN ; Zhe DONG ; Chao LIU ; Yimeng LIU ; Zhidong LUAN ; Qi LIU ; Xuexiang BAO ; Shun WANG
Chinese Journal of Biotechnology 2016;32(4):518-526
Phenylalanine hydroxylase (PAH) is a member of aromatic amino acid hydroxylase (AAAHs) family, and catalyze phenylalanine (Phe) into tyrosine (Tyr). Using immunological and RT-PCR methods to prove the existence of phenylalanine hydroxylase (PAH) gene in the brain of Neanthes japonica in protein and nucleic acid level. Using Western blotting to detect the pah immunogenicity of Neanthes japonica. Making paraffin sections and using immunohistochemical technique to identify the presence and distribution of the phenylalanine hydroxylase gene in the brain of Neanthes japonica. Clone pah gene from the brain of Neanthes japonica by RT-PCR, constructing plasmid and transferring into E. coli to amplification, picking a single homogeneous colony, double digesting then making sequence and comparing homology. Western blotting results showed that the expression of the protein is present in Neanthes japonica brain, immunohistochemistry technique results showed that phenylalanine hydroxylase mainly expressed in abdominal of forebrain, dorsal and sides of midbrain. RT-PCR technique results showed that the phenylalanine hydroxylase exist in the brain of Neanthes japonica and has a high homology with others animals. PAH is present in the lower organisms Neanthes japonica, in protein and nucleic acid level. Which provide the foundation for further study the evolution of aromatic amino acid hydroxylase genes in invertebrate.
Animals
;
Blotting, Western
;
Brain
;
enzymology
;
Escherichia coli
;
metabolism
;
Phenylalanine Hydroxylase
;
genetics
;
metabolism
;
Polychaeta
;
enzymology
;
genetics
4.Overexpression of Escherchia coli phytase with high specific activity.
Hui-Ying LUO ; Bin YAO ; Tie-Zheng YUAN ; Ya-Rul WANG ; Xiu-Yun SHI ; Ning-Feng WU ; Yun-Liu FAN
Chinese Journal of Biotechnology 2004;20(1):78-84
High-level expression of phytase with high specific activity is an effective way to improve phytase fermentation potency and reduce its production cost. The gene appA encoding Escherchia coli phytase AppA with high specific activity was modified and artificially synthesized according to the bias in codon choice of the high expression gene in Pichia pastoris without changing the amino acid sequence of the AppA. The modified gene, appA-m, was inserted in the Pichia pastoris expression vector pPIC9, then introduced into the host Pichia pastoris by electroporation. The Pichia pastoris recombinants for phytase overexpression were screened by enzyme activity analysis and SDS-PAGE. The result of Southern blotting analysis of the recombinant yeast indicated that only one copy of the appA-m gene was integrated into the genome of Pichia pastoris. The result of Northern analysis of the recombinant yeast showed that the modified gene was effectively transcribed. SDS-PAGE analysis of the phytase expressed in Pichia pastoris revealed that the phytase was overexpressed and secreted into the medium supernatant. There are three phytase proteins with apparent molecular weight in approximately 50kD, 52kD and 54kD respectively in the media, which are larger in the size than the native phytase from E. coli. The results of N-terminal sequecing and deglycosylation of the expressed phytase in Pichia pastoris proved that the expressed phytase were glycosylated protein with different glycosylation degree. The expressed phytase Pichia pastoris shared similar pH and temperature optima to those of the natural phytase from E. coli and had highly resistant to pepsin digestion. In 5-L fermentor, after induced by 0.5% methanol for 120 h, the expression level of phytase protein was 2.5 mg/mL, and the phytase activity (fermentation potency) exceeded 7.5 x 10(6) IU/mL, which was the highest among those of all kinds of recombinant strains reported now.
6-Phytase
;
genetics
;
metabolism
;
Escherichia coli
;
enzymology
;
Escherichia coli Proteins
;
genetics
;
Fermentation
;
Pichia
;
genetics
;
Plasmids
;
Recombinant Proteins
;
biosynthesis
5.Construction and characterization of Escherichia coli D-3-phosphoglycerate dehydrogenase mutants with feedback-inhibition relief.
Hui DENG ; Cunwu CHEN ; Chuanbo SUN ; Chuanbao WEI
Chinese Journal of Biotechnology 2016;32(4):468-477
3-Phosphoglycerate dehydrogenase (PGDH, EC 1.1.1.95) is the key enzyme in L-serine biosynthesis and its coding gene is serA. PGDH is feedback inhibited by L-serine. In order to relieve the feedback-inhibition of PGDH by L-serine, H344 or D346 or D364 were chosen for site directed mutagenesis. The mutants were generated by the standard QuikChange mutagenesis, further subcloned into expression vector pT7-7 and transformed into Escherichia coli BL21 (DE3) cells. The recombinant cells were collected after cultured in LB media post induced by isopropyl beta-Dthiogalactopyranoside. The enzymes were purified by anion exchange chromatography, and SDS-PAGE showed that the purified enzymes were homogenous. Enzyme characterization indicated that the mutant enzyme showed similar activity, optimal temperature, and optimal pH as that of the wild-type enzyme. Moreover, feedback inhibition study showed that the activity of the double mutant (N346A/H344A) could remain 96% in the presence of serine up to 160 mmol/L, whereas the activity of the wild-type enzyme remains only 50% in the presents of serine of 7 μmol/L, thus successfully relieving the feedback inhibition of PGDH with its activity remained.
Electrophoresis, Polyacrylamide Gel
;
Escherichia coli
;
enzymology
;
Escherichia coli Proteins
;
genetics
;
Industrial Microbiology
;
Mutagenesis, Site-Directed
;
Phosphoglycerate Dehydrogenase
;
genetics
;
Serine
;
biosynthesis
6.In vitro observation of haemolymph melanization and melanin-related biosynthesis enzyme genes in silkworm, Bombyx mori.
Tian LI ; Liang ZHANG ; Qi SHEN ; Wei ZHAO ; Li LI ; Yin LV ; Guibing JIANG ; Dengfeng YAN ; Junjie XIAO ; Ping CHEN
Chinese Journal of Biotechnology 2016;32(8):1093-1103
The observation statistics suggested that the haemolymph melanization speed of larvae became fast and the growth inhibition of Escherichia coli was strong as the quantities of feeding on mulberry leaves increased. The RT-PCR result showed that the mRNA expressions of melanin biosynthesis enzyme BmTan, BmPo-1, BmYellow-f and BmDdc were high in the haemolyph of 5 L 3 d larvae. The qPCR analysis showed Bmtan, Bmddc, Bmyellow, Bmebony and Bmblack, especially Bmddc expression were significantly higher in black disease larvae than in normal larvae. Compared with control, Ddc inhibitors drastically inhibited the lipopolysaccharide-induced haemolymph melanization. In addition, the content of Dopa and Dopamine markedly rose after E. coli injection. These indicated that haemolymph melanization was linked to immune defenses and Bmddc may play a role in melanization response of haemolymph immune in silkworm.
Animals
;
Bombyx
;
enzymology
;
genetics
;
microbiology
;
Escherichia coli
;
Genes, Insect
;
Hemolymph
;
chemistry
;
Larva
;
Melanins
;
biosynthesis
7.Expression and characterization of a novel ω-transaminase from Burkholderia phytofirmans PsJN.
Yuncheng DU ; Wenyue DONG ; Jinju JIANG ; Qijia CHEN ; Jinhui FENG ; Qiaqing WU ; Dunming ZHU
Chinese Journal of Biotechnology 2016;32(7):912-926
Production of chiral amines and unnatural amino-acid using ω-transaminase can be achieved by kinetic resolution and asymmetric synthesis, thus ω-transaminase is of great importance in the synthesis of pharmaceutical intermediates. By genomic data mining, a putative ω-transaminase gene hbp was found in Burkholderia phytofirmans PsJN. The gene was cloned and over-expressed in Escherichia coli BL21 (DE3). The recombinant enzyme (HBP) was purified by Ni-NTA column and its catalytic properties and substrate profile were studied. HBP showed high relative activity (33.80 U/mg) and enantioselectivity toward β-phenylalanine (β-Phe). The optimal reaction temperature and pH were 40 ℃ and 8.0-8.5, respectively. We also established a simpler and more effective method to detect the deamination reaction of β-Phe by UV absorption method using microplate reader, and demonstrated the thermodynamic property of this reaction. The substrate profiling showed that HBP was specific to β-Phe and its derivatives as the amino donor. HBP catalyzed the resolution of rac-β-Phe and its derivatives, the products (R)-amino acids were obtained with about 50% conversions and 99% ee.
Bacterial Proteins
;
biosynthesis
;
genetics
;
Burkholderia
;
enzymology
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Transaminases
;
biosynthesis
;
genetics
8.Knockout of the ptsG gene in engineered Escherichia coli for homoethanol fermentation from sugar mixture.
Tao YAN ; Jinfang ZHAO ; Wenhui GAO ; Jinhua WANG ; Yongze WANG ; Xiao ZHAO ; Shengde ZHOU
Chinese Journal of Biotechnology 2013;29(7):937-945
To realize the simultaneous fermentation of xylose and glucose, ptsG (one of the glucose-PTS genes) was deleted from the engineered ethanologenic Escherichia coli SZ470 (deltapflB, deltafrdABCD, deltaackA, deltaldhA), resulting in loss of glucose effect in the mutant SZ470P (deltaptsG). When tested in 5% mixture of glucose (2.5%) and xylose (2.5%), SZ470P simultaneously used glucose (13 g/L) and xylose (20 g/L) whereas the parent strain SZ470 sequentially used glucose (25 g/L) then xylose (5 g/L). Upon completion of the fermentation, both strains achieved similar product yield of 89%. SZ470P produced 15.01 g/L of ethanol, which was 14.32% higher than that produced by SZ470 (12.86 g/L). Deleting ptsG gene enabled the mutant strain SZ470P to simultaneously use both glucose and xylose and achieve better ethanol production.
Escherichia coli
;
enzymology
;
genetics
;
Ethanol
;
chemistry
;
Fermentation
;
Glucose
;
chemistry
;
Phosphoenolpyruvate Sugar Phosphotransferase System
;
genetics
;
Xylose
;
chemistry
9.Identification of Escherichia coli 8-oxoguanine endonuclease.
Yun Song LEE ; Myung Hee CHUNG
Experimental & Molecular Medicine 2000;32(3):155-160
7,8-Dihydro-8-oxoguanine (oh8Gua) endonuclease is a DNA repair enzyme in Escherichia coli to remove oh8Gua, a promutagenic DNA adduct. Due to the unique mode of enzyme action and substrate specificity, this DNA repair enzyme has been suggested to be identical to 2,6-diamino-4-hydroxyformamidopyrimidine (Fapy)-DNA glycosylase (Fpg). However, oh8Gua endonuclease had not been definitely identified because it had not been homogeneously purified. In this study, we attempted to purify and identify the enzyme. Through several purification procedures, we obtained two proteins (32 kD and 29 kD). The larger protein co-migrated with Fpg in 12% SDS-PAGE gel. Sequences of N-terminal amino acids of these two proteins were identical to that of Fpg; the smaller one is a degraded product of oh8Gua endonuclease during purification steps. These results indicate that oh8Gua endonuclease is identical to Fpg, implying that oh8Gua in oxidatively damaged DNA rather than Fapy is more physiologically relevant substrate for Fpg.
Chromatography, Affinity
;
DNA Damage
;
DNA Repair
;
Escherichia coli/enzymology*
;
Nucleosidases/isolation & purification*
;
Sequence Analysis, Protein
10.Molecular cloning of squalene synthase gene form Paris polyphylla and its expression in Escherichia coli.
Fei GAO ; Xiao-Peng LUO ; Liang TAO ; Cheng-Lei LI ; Chun-Bang DING ; Hui CHEN ; Qi WU
China Journal of Chinese Materia Medica 2013;38(13):2086-2091
OBJECTIVETo clone the cDNA sequence of squalene synthase gene from Paris polyphylla, and characterize the biological features of the obtained SQS.
METHODUsing homology cloning and RACE technique, a full-length cDNA sequence of PpSQS gene was isolated from P. polyphylla. The obtained sequence was analyzed by bioinformatics softwares. A plasmid [named pET-30b (+)-PpSQS] was constructed for prokaryotic expression the recombinant PpSQS.
RESULTThe full-length cDNA of PpSQS gene is 1 498 bp, which contains a 1 212 bp ORF. Sequence analysis indicated that PpSQS encoded 403 amino acids residues with a calculated molecular weight (MW) of 46.36 kDa and an isoelectric point (pI) of 6.83. SDS-PAGE results showed that the recombinant PpSQS was expressed in Escherichia coli BL21 (DE3) by inducing with 1 mmol x L(-1) IPTG.
CONCLUSIONThe full-length cDNA sequence of PpSQS gene was obtained from P. polyphylla, and its molecular features were consisted with classic SQS in plant. The recombinant PpSQS was successfully expressed in E. coli.
Cloning, Molecular ; Escherichia coli ; genetics ; Farnesyl-Diphosphate Farnesyltransferase ; genetics ; Liliaceae ; enzymology ; Phylogeny ; Recombinant Proteins ; biosynthesis