1.Sequential changes of bone marrow pathology and BFU-E in recipients of allogenic bone marrow transplantation.
Jong Hyun YOON ; Han Ik CHO ; Sang In KIM ; Byeong Kook KIM ; Seonyang PARK ; Noe Kyeong KIM ; Munho LEE
Korean Journal of Hematology 1992;27(1):23-32
No abstract available.
Bone Marrow Transplantation*
;
Bone Marrow*
;
Erythroid Precursor Cells*
;
Pathology*
2.Distribution and Characteristics of CD133+, CD34+ Cells in Counterflow Centrifugal Elutriation Fraction of Cord Blood and Bone Marrow.
Hye Jin PARK ; Nak Gyun CHUNG ; Sun Young KIM ; Dae Chul JEONG ; Pil Sang JANG ; Bin CHO ; Hack Ki KIM
Korean Journal of Pediatric Hematology-Oncology 2004;11(1):17-25
PURPOSE: Many studies for hematopoietic stem cell have investigated CD133, instead of CD34, as a new surrogate stem cell marker. Counterflow centrifugal elutriation (CCE) is a physical separation of a homogeneous cell population through cell sedimentation characteristics. We evaluated the stem cell distribution and hematopoietic function from cord blood (CB) and bone marrow (BM) through CCE. METHODS: We obtained total nucleated cells from CB and BM, and separated the cell fractions according to media infusion flow rates (17 mL/min (FR 17), 24 mL/min (FR 24), 29 mL/min (FR 29), and rotor off (R/O) ) by CCE. We analyzed the proportion of CD34+ and CD133+ cells in each fraction, and performed methylcellulose-based colony assay. RESULTS: In CB, the cell recovery rates after CCE were 5.9+/-4.3% in FR 17, 4.2+/-2.1% in FR 24, 19.4+/-11.9% in FR 29, and 61.9+/-11.7% in R/O. In BM, they were 14.9+/-8.2% in FR 17, 17.4+/-13.4% in FR 24, 23.6+/-6.11% in FR 29, and 27.1+/-8.9% in R/O. The distributions of CD133+ and CD34+ cells in CB were more abundant in R/O (2.91%, 1.85%) than in other fractions. In BM, CD133+ and CD34+ cell rates in R/O (5.40%, 2.75%) were similar with those in unmanipulated BM (5.48%, 2.78%). In both CB and BM, there was more CFU-GM and BFU-E in R/O than in other fractions. CONCLUSION: We suggested that the distribution of CD34+ and CD133+ cells might be different between CB and BM. However, the R/O containing relatively large cells could have an effective clonogenicity compared with the unmanipulated sample in both CB and BM.
Bone Marrow*
;
Erythroid Precursor Cells
;
Fetal Blood*
;
Granulocyte-Macrophage Progenitor Cells
;
Hematopoietic Stem Cells
;
Stem Cells
3.Comparison of Effect of Serum-Free Culture Systems on Directional Erythroid Differentiation of Human Umbilical Cord Blood CD34 Cells.
Yong-Juan DUAN ; Wen-Tian WANG ; Xiao-Jing WEI ; Yang YANG ; Hui-Juan ZHAO ; Xiao HU
Journal of Experimental Hematology 2019;27(3):935-941
OBJECTIVE:
To compare the efficacy of directional erythroid differentiation in different serum free culture systems and to screen the optimal culture systems for inducing the differentiation of umbilical cord blood hematopoietic stem and progenior cells (HSPC) to erythroid cells.
METHODS:
The CD34 cells from umbilical blood munonuclear cells were sorted by using the magnetic beads, and were inoculated into 3 different of culture systems (system 1, 2 and 3 respectively), to induce erythrold differentiation by 3 stage culture. The living cells were counted in different differentiation stages and were observed by Wright-Giemsa staining; the expression of CD71 and CD235a on cell surface was detected by flow cytometry, the erythroid differentiation pteency was detected via colony-forming test.
RESULTS:
The ability of system 2 to promote the HSPC proliferation was the strongest, the efficacy of system 3 to promote the erythroid differentiation of HSPC was the most optimal; the proliferation ability of cells cultured in system 2 for 2-15 days all was higher than that of cells cutured in system 1 and 3 (P<0.05). The flow cytometry detection showed that the expression of CD71 and CD235a on surface of cells cultured in system 3 was the highest, the CD235a percentage on day 15 of differentiation in system 3 was (92.33±3.89)%, that in system 2 was (84.67±3.12)%, while that in system 1 was (72.17±6.83)% (P<0.05). Cell morplologic detection showed that throid differentiation was accelerated on day 12, the percentage of orthochromatic erythrocytes in system 3 was (67.67±2.08)% which was 10.69 and 25.34 times higher than that in system 2 and 1 respectively (P<0.05). The colony-forming test showed the ratio of BFU-E in system 3 increased gradually on day 3-9 (r=0.99, P<0.05), which was significanlly higher than that in system 2 and 1 on day 9 (90.35±5.52% vs 77.06±2.26% and 74.50±3.95%).
CONCLUSION
Culture system 3 is the most effective serum-free erythroid differentiation system, and the culture system 2 is the most powerful HSPC proliferation system. This study results provide a technical basis for further efficiently increasing and inducing the erythroid proliferation and differentiation of HSPC, and also provide culture system in vitro for the clinical application and basic research.
Antigens, CD34
;
Cell Differentiation
;
Cells, Cultured
;
Culture Media, Serum-Free
;
Erythroid Precursor Cells
;
Fetal Blood
;
Humans
4.Effect of sirolimus on erythropoiesis of K562 cell line and patients with pure red cell aplasia in vitro.
Chen YANG ; Fang Fei CHEN ; Zhang Biao LONG ; Ya Li DU ; Hong Min LI ; Miao CHEN ; Bing HAN
Chinese Journal of Hematology 2018;39(4):310-313
Objective: To understand the effect of sirolimus on the erythropoiesis of K562 cell line and bone marrow cells from pure red cell aplasia (PRCA) patients and normal controls. Methods: Different concentrations (10, 100, 1 000 nmol/L) of sirolimus were added to the K562 cell line or bone marrow cells from PRCA patients or normal controls and cultured 14 days for BFU-E formation. Meanwhile, sirolimus was also added to the serum treated PRCA bone marrow cells to cultivate for the same priod of time. Results: Neither K562 cells, bone marrow cells from PRCA patients or normal controls showed any difference when sirolimus was added to the culture system for BFU-E. However, BFU-E formation decreased after serum was added in PRCA patients (76.40±22.48 vs 136.33±12.58, t=-4.329, P=0.001) and this suppression of BFU-E was partly corrected by 1 000 nmol/L sirolimus treatment (97.14±15.83 vs 76.40±22.48, P=0.038). Conclusions: Sirolimus may modulate the suppression of erythropoiesis by serum instead of directly stimulate the growth of red blood cells in PRCA patients.
Erythroid Precursor Cells
;
Erythropoiesis
;
Humans
;
K562 Cells
;
Red-Cell Aplasia, Pure
;
Sirolimus
5.A Case of Pure Red Cell Anemia Complicated by Antiepileptic Drugs.
Hyunmi KIM ; Sang Gyu PARK ; Sung Ryeul KIM
Journal of the Korean Pediatric Society 1999;42(2):264-267
A 12-year-old boy developed pure red cell anemia(PRCA) during a combination therapy of antiepileptic drugs(AEDs) for epilepsy. His complex partial seizure was intractable to monotherapy. During 7 months of treatment, he was treated with Vigabatrin, Carbamazepine and Valproate. While switching from Carbamazepine to Valproate, he presented anemia but with no jaundice. His hemoglobin was 4.1g/dl bone-marrow biopsy revealed erythroid hypoplasia with normal myelopoiesis and megakaryocytopoiesis, indicating PRCA. Rapid recovery from PRCA was observed 1 month after discontinuation of Valproate, without immunosuppressive therapy. Although the hematologic toxicity of AEDs is well documented, isolated cessation of red cell production is uncommon. Our observation suggests that the synergistic toxicity caused by Valproate and Carbamazepine may induce PRCA through the inhibitory effect beyond the differentiation stage of BFU-E and CFU-E.
Anemia*
;
Anticonvulsants*
;
Biopsy
;
Carbamazepine
;
Child
;
Epilepsy
;
Erythroid Precursor Cells
;
Humans
;
Jaundice
;
Male
;
Myelopoiesis
;
Seizures
;
Thrombopoiesis
;
Valproic Acid
;
Vigabatrin
6.Analysis of clinical characteristics in 45 cases of Diamond-Blackfan anemia.
Yu-Mei CHEN ; Min RUAN ; Ya-Qin WANG ; Yao ZOU ; Li ZHANG ; Tian-Feng LIU ; Xiao-Fan ZHU
Journal of Experimental Hematology 2012;20(3):646-649
In order to explore the diagnosis and therapy of Diamond Blackfan anemia (DBA), the clinical data of 45 cases of DBA admitted in our hospital from February 1994 to July 2011 were analyzed retrospectively. The clinical characteristics, results of laboratory examination, treatment reaction and outcome of disease were investigated. The results indicated that out of 45 children diagnosed as DBA, 14 cases (31.1%) had short stature and physical malformation. All patients had anemia with reticulocytopenia. Thirty-four patients (75.6%) had mean corpuscular volume. Eleven patients (24.4%) had macrocytic anemia. Bone marrow examination showed a marked erythroid hypoplasia in all patients. Out of 29 cases tested for fetal hemoglobin (HbF), 13 cases (44.8%) had high level of HbF. Erythroid colony-forming unit of bone marrow was tested in 25 patients, among them 12 patients (48%) showed normal plasia, 13 (52%) showed hypoplasia. The erythropoietin (EPO) levels of 17 patients were elevated. Karyotypes were examined in 28 patients, and showed all normal. The treatment was based on corticosteroids and Cyclosporine A. Thirty patients had good response to corticosteroid therapy, and 10 of them obtained a sustained corticosteroid-induced remission. Twenty cases discontinued corticosteroid therapy after remission, as a result, 15 cases (75%) relapsed, moreover all the relapsed cases still had good response to corticosteroid. Two relapsed patients suffered from aplastic anemia, one of them died of therapy failure. Six patients were unresponsive to corticosteroid, 1 of which achieved remission with cyclosporine A and the others continued to receive regular transfusions. 3 patients received iron chelation therapy. It is concluded that the clinical characteristics, complete blood count, bone marrow smear, HbF level and EPO level are useful to make a diagnosis of DBA. Most patients have a good response to corticosteroid therapy, but relapse rate is high when drug was discontinued. Patients unresponsive to corticosteroid should receive regular transfusions and chelation therapy.
Anemia, Diamond-Blackfan
;
diagnosis
;
therapy
;
Bone Marrow Examination
;
Child
;
Child, Preschool
;
Erythroid Precursor Cells
;
Female
;
Humans
;
Infant
;
Male
;
Retrospective Studies
7.Effects of 1,4-benzoquinone on the proliferation activity of human bone marrow stem cells.
Yun XIAO ; Li JU ; Wei WU ; Xiang-li GAO ; Jing WANG ; Xing ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2012;30(5):343-347
OBJECTIVETo explore the influence of 1,4-benzoquinone (1,4-BQ) on proliferation of human bone marrow haematopoietic stem cells (hBM-HSCs) and human bone marrow mesenchymal stem cells (hBM-MSCs).
METHODSThe bone marrow samples were collected from a healthy donor. Methylcellulose semi-solid culture medium was used to culture the mononuclear cells of bone marrow in different culture systems. Colony-forming unit (CFU) assay was utilized to evaluate the proliferation of hBM-HSCs exposed to 1,4-BQ at the doses of 10, 25, 50 and 100 µmol/L and to observe the influence of 1,4-BQ on the Colony-forming unit-erythroid (CFU-E)/Burst-forming unit-erythroid (BFU-E), Colony-forming unit-granulocyte, macrophage (CFU-GM), Colony-forming unit-granulocyte, erythroid, macrophage, megakaryocyte (CFU-GEMM) in hBM-MSCs. MTT assay was used to detect the proliferation of hBM-MSCs exposed to 1,4-BQ at the doses of 1, 5, 10, 25, 50, 100, 200, 500 and 1000 µmol/L for 24 h, respectively, after hBM-MSCs were isolated, cultured and expanded.
RESULTSThe results of CFU assay indicated that numbers of CFU-E/BFU-E, CFU-GM and CFU-GEMM in 25, 50 and 100 µmol/L groups significantly decreased, as compared with control group (P < 0.05). However, no significant difference was found between the 10 µmol/L group and the control group. The results of MTT assay showed that the cellular viability of hBM-MSCs exposed to 1,4-BQ at the doses of 50 ∼ 200 µmol/L for 24 h significantly decreased in a dose-depended manner. When the exposure dose was higher than 200 µmol/L, the cellular viability of hBM-MSCs was lower than 5% which was significantly lower than that of control group (P < 0.05). When the exposure dose was lower than 25 µmol/L, there was no significant difference of cellular viability between exposure group and control group (P > 0.05).
CONCLUSIONThe results of the present study demonstrated that 1,4-BQ could inhibit the colony forming of hBM-HSCs and the relative viability of hBM-MSCs in vitro. The hematotoxicity induced by 1,4-BQ may be related to inhibiting the proliferation capacity of hBM-HSCs.
Benzoquinones ; toxicity ; Bone Marrow Cells ; cytology ; Cell Proliferation ; drug effects ; Cells, Cultured ; Erythroid Precursor Cells ; Granulocyte-Macrophage Progenitor Cells ; cytology ; Humans ; Mesenchymal Stromal Cells ; cytology
8.Parvovirus B19 Infection in a Child with Acute Lymphoblastic Leukemia during Maintenance Chemotherapy
Ki Won SUNG ; Eun Jae CHANG ; Woo Jung JANG ; In sang JEON
Clinical Pediatric Hematology-Oncology 2012;19(1):44-48
Parvovirus B19 targets human erythroid progenitor cells, causing a self-limiting subclinical erythroid aplasia in the healthy hosts, whereas the immunocompromised subjects generate a prolonged viremia and chronic anemia with or without thrombocytopenia or neutropenia. The attenuated immune response in patients with acute lymphoblastic leukemia (ALL), receiving chemotherapy, may generate the hematologic aberration which mimic a leukemia relapse or therapy-induced cytopenia. This mimicry may lead to the unnecessary examination and the recess of chemotherapy. If the anemia with or without thrombocytopenia or neutropenia is noticed during the chemotherapy of ALL, the parvovirus B19 infection should be considered as a cause of hematologic aberration. We report a case of parvovirus B19 infection confirmed by PCR in a child with ALL who was initially sero-negative (IgM and IgG) against parvovirus B19 to highlight the importance of alertness to the possibility of parvovirus B19 infection during chemotherapy.
Anemia
;
Child
;
Erythroid Precursor Cells
;
Humans
;
Hydrazines
;
Leukemia
;
Maintenance Chemotherapy
;
Neutropenia
;
Parvovirus
;
Polymerase Chain Reaction
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
Recurrence
;
Thrombocytopenia
;
Viremia
9.Effects of different cooling rates on cryopreservation of hematopoietic stem cells from cord blood.
Hua-Ping SHEN ; Chun-Mei DING ; Zhan-You CHI ; Zi-Zhen KANG ; Wen-Song TAN
Chinese Journal of Biotechnology 2003;19(4):489-492
Clinical evidence of hematopoietic restoration with umbilical cord blood (UCB) grafts indicates the UCB can be a useful source of hematopoietic stem cells for routine bone marrow reconstitution. Considering (10 +/- 5) x 10(8) nucleared cells per cord blood unit, there is a potential limitation for the use of cord blood in adults, which, however, can be overcome by ex vivo expansion of cells. A prerequisite for expansion is the significantly higher recovery of MNC, CD34+ cells and colony-forming cells (CFC) by thawing cryopreserved MNC. Cooling rate always acts as a critical factor that can affect the recovery of cells. Although the rate of - 1 degrees C/min is adopted in most of the cryopreservations, no data has been reported about the detailed effects of different cooling rates. The aim of the study was to reveal the different effects of cooling rates on cryopreservation of hematopoietic stem cells from cord blood. UCB samples were collected, and cryopreserved as mononuclear cells (MNC) with different cooling rates of - 0.5 degrees C/min, - 1 degrees C/min, - 5 degrees C/min, and the recovery and viability of MNC and CD34+ cells, the clonogenic capacity and the ex vivo expansion potential of UCB progenitor cells were evaluated after thawing. With - 1 degrees C/min cooling rate, the recovery of MNC reached 93.3% +/- 1.8% , viability 95.0% +/- 3.9% , recovery of CD34+ cells 80.0% +/- 17.9% , and clonogenic recovery were 87.1% +/- 5.5%, 88.5% +/- 8.9%, 86.2% +/- 7.4% for BFU-E CFU-GM CFU-MK, respectively. After 14 days of liquid culture, no significant difference was detected in CFC expansion between fresh and cryopreserved MNC cells with - 1 degrees C/min cooling rate, but this was not the case with - 0.5 degreesC/min and - 5 degrees C/min. In conclusion, it was demonstrated that controlling the rate at - 1 degrees C/min is more suitable for cryopreservation of hematopoietic stem cells than - 0.5 degrees C/min and - 5 degrees C/min.
Cell Survival
;
physiology
;
Cells, Cultured
;
Cryopreservation
;
methods
;
Erythroid Precursor Cells
;
cytology
;
Fetal Blood
;
cytology
;
Flow Cytometry
;
Granulocyte-Macrophage Progenitor Cells
;
cytology
;
Hematopoietic Stem Cells
;
cytology
;
Humans
10.Immunomodulatory Activity of the Water Extract from Medicinal Mushroom Inonotus obliquus.
Mycobiology 2005;33(3):158-162
The immunomodulatory effect of aqueous extract of Inonotus obliquus, called as Chaga, was tested on bone marrow cells from chemically immunosuppressed mice. The Chaga water extract was daily administered for 24 days to mice that had been treated with cyclophosphamide (400 mg/kg body weight), immunosuppressive alkylating agent. The number of colony-forming unit (CFU)-granulocytes/macrophages (GM) and erythroid burst-forming unit (BFU-E), increased almost to the levels seen in non-treated control as early as 8 days after treatment. Oral administration of the extract highly increased serum levels of IL-6. Also, the level of TNF-alpha was elevated by the chemical treatment in control mice, whereas was maintained at the background level in the extract-treated mice, indicating that the extract might effectively suppress TNF-alpha related pathologic conditions. These results strongly suggest the great potential of the aqueous extract from Inonotus obliquus as immune enhancer during chemotherapy.
Administration, Oral
;
Agaricales*
;
Animals
;
Bone Marrow
;
Bone Marrow Cells
;
Cyclophosphamide
;
Drug Therapy
;
Erythroid Precursor Cells
;
Hematopoiesis
;
Interleukin-6
;
Mice
;
Stem Cells
;
Tumor Necrosis Factor-alpha
;
Water*