1.Production of mature red blood cell by using peripheral blood mononuclear cells.
Yan-Jun JIA ; Jiang LIU ; Ke-Ying ZHANG ; Xiao-Yan SHANG ; Wei LI ; Li-Jun WANG ; Na LIU ; Lin WANG ; Shuang CUI ; Lei NI ; Bo-Tao ZHAO ; Dong-Mei WANG ; Song-Ming GAO ; Zhi-Xin ZHANG
Journal of Experimental Hematology 2014;22(5):1435-1441
Most protocols for in vitro producing red blood cells (RBC) use the CD34(+) cells or embryonic stem cells from cord blood, bone marrow or peripheral blood as the start materials. This study was purposed to produce the mature RBC in vitro by using peripheral blood mononuclear cells as start material. The peripheral blood mononuclear cells (PBMNC) were isolated from buffy coat after blood leukapheresis, the mature red blood cells (RBC) were prepared by a 4-step culture protocol. The results showed that after culture by inducing with the different sets of cytokines and supporting by mouse MS-5 cell line, the expansion of PBMNC reached about 1000 folds at the end of the culture. About 90% of cultured RBC were enucleated mature cells which had the comparable morphological characteristics with normal RBC. Colony-forming assays showed that this culture system could stimulate the proliferation of progenitors in PBMNC and differentiate into erythroid cells. The structure and function analysis indicated that the mean cell volume of in vitro cultured RBC was 118 ± 4 fl, which was slight larger than that of normal RBC (80-100 fl); the mean cell hemoglobin was 36 ± 1.2 pg, which was slight higher than that of normal RBC (27-31 pg); the maximal deformation index was 0.46, which approachs level of normal RBC; the glucose-6-phosphate dehydrogenase and pyrurvate kinase levels was consistant with young RBC. It is concluded that PBMNC are feasble, convenient and low-cost source for producing cultured RBC and this culture system is suitable to generate the RBC from PBMNC.
Animals
;
Bone Marrow
;
Cell Differentiation
;
Cell Line
;
Cytokines
;
Erythrocytes
;
cytology
;
Erythroid Cells
;
Leukocytes, Mononuclear
;
cytology
;
Mice
2.Effects of different cooling rates on cryopreservation of hematopoietic stem cells from cord blood.
Hua-Ping SHEN ; Chun-Mei DING ; Zhan-You CHI ; Zi-Zhen KANG ; Wen-Song TAN
Chinese Journal of Biotechnology 2003;19(4):489-492
Clinical evidence of hematopoietic restoration with umbilical cord blood (UCB) grafts indicates the UCB can be a useful source of hematopoietic stem cells for routine bone marrow reconstitution. Considering (10 +/- 5) x 10(8) nucleared cells per cord blood unit, there is a potential limitation for the use of cord blood in adults, which, however, can be overcome by ex vivo expansion of cells. A prerequisite for expansion is the significantly higher recovery of MNC, CD34+ cells and colony-forming cells (CFC) by thawing cryopreserved MNC. Cooling rate always acts as a critical factor that can affect the recovery of cells. Although the rate of - 1 degrees C/min is adopted in most of the cryopreservations, no data has been reported about the detailed effects of different cooling rates. The aim of the study was to reveal the different effects of cooling rates on cryopreservation of hematopoietic stem cells from cord blood. UCB samples were collected, and cryopreserved as mononuclear cells (MNC) with different cooling rates of - 0.5 degrees C/min, - 1 degrees C/min, - 5 degrees C/min, and the recovery and viability of MNC and CD34+ cells, the clonogenic capacity and the ex vivo expansion potential of UCB progenitor cells were evaluated after thawing. With - 1 degrees C/min cooling rate, the recovery of MNC reached 93.3% +/- 1.8% , viability 95.0% +/- 3.9% , recovery of CD34+ cells 80.0% +/- 17.9% , and clonogenic recovery were 87.1% +/- 5.5%, 88.5% +/- 8.9%, 86.2% +/- 7.4% for BFU-E CFU-GM CFU-MK, respectively. After 14 days of liquid culture, no significant difference was detected in CFC expansion between fresh and cryopreserved MNC cells with - 1 degrees C/min cooling rate, but this was not the case with - 0.5 degreesC/min and - 5 degrees C/min. In conclusion, it was demonstrated that controlling the rate at - 1 degrees C/min is more suitable for cryopreservation of hematopoietic stem cells than - 0.5 degrees C/min and - 5 degrees C/min.
Cell Survival
;
physiology
;
Cells, Cultured
;
Cryopreservation
;
methods
;
Erythroid Precursor Cells
;
cytology
;
Fetal Blood
;
cytology
;
Flow Cytometry
;
Granulocyte-Macrophage Progenitor Cells
;
cytology
;
Hematopoietic Stem Cells
;
cytology
;
Humans
3.Effects of 1,4-benzoquinone on the proliferation activity of human bone marrow stem cells.
Yun XIAO ; Li JU ; Wei WU ; Xiang-li GAO ; Jing WANG ; Xing ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2012;30(5):343-347
OBJECTIVETo explore the influence of 1,4-benzoquinone (1,4-BQ) on proliferation of human bone marrow haematopoietic stem cells (hBM-HSCs) and human bone marrow mesenchymal stem cells (hBM-MSCs).
METHODSThe bone marrow samples were collected from a healthy donor. Methylcellulose semi-solid culture medium was used to culture the mononuclear cells of bone marrow in different culture systems. Colony-forming unit (CFU) assay was utilized to evaluate the proliferation of hBM-HSCs exposed to 1,4-BQ at the doses of 10, 25, 50 and 100 µmol/L and to observe the influence of 1,4-BQ on the Colony-forming unit-erythroid (CFU-E)/Burst-forming unit-erythroid (BFU-E), Colony-forming unit-granulocyte, macrophage (CFU-GM), Colony-forming unit-granulocyte, erythroid, macrophage, megakaryocyte (CFU-GEMM) in hBM-MSCs. MTT assay was used to detect the proliferation of hBM-MSCs exposed to 1,4-BQ at the doses of 1, 5, 10, 25, 50, 100, 200, 500 and 1000 µmol/L for 24 h, respectively, after hBM-MSCs were isolated, cultured and expanded.
RESULTSThe results of CFU assay indicated that numbers of CFU-E/BFU-E, CFU-GM and CFU-GEMM in 25, 50 and 100 µmol/L groups significantly decreased, as compared with control group (P < 0.05). However, no significant difference was found between the 10 µmol/L group and the control group. The results of MTT assay showed that the cellular viability of hBM-MSCs exposed to 1,4-BQ at the doses of 50 ∼ 200 µmol/L for 24 h significantly decreased in a dose-depended manner. When the exposure dose was higher than 200 µmol/L, the cellular viability of hBM-MSCs was lower than 5% which was significantly lower than that of control group (P < 0.05). When the exposure dose was lower than 25 µmol/L, there was no significant difference of cellular viability between exposure group and control group (P > 0.05).
CONCLUSIONThe results of the present study demonstrated that 1,4-BQ could inhibit the colony forming of hBM-HSCs and the relative viability of hBM-MSCs in vitro. The hematotoxicity induced by 1,4-BQ may be related to inhibiting the proliferation capacity of hBM-HSCs.
Benzoquinones ; toxicity ; Bone Marrow Cells ; cytology ; Cell Proliferation ; drug effects ; Cells, Cultured ; Erythroid Precursor Cells ; Granulocyte-Macrophage Progenitor Cells ; cytology ; Humans ; Mesenchymal Stromal Cells ; cytology
4.The induction and cryopreservation of erythroid progenitor cells derived from umbilical cord blood mononuclear cells.
Lin CHEN ; Xiaoyan XIE ; Jiafei XI ; Yang LYU ; Yu TIAN ; Daqing LIU ; Wen YUE ; Yanhua LI ; Xue NAN ; Siting LI ; Zeng FAN ; Xuetao PEI
Chinese Journal of Hematology 2016;37(1):45-50
OBJECTIVETo discover the techniques for ex vivo generation and cryopreservation of erythroid progenitor cells (EPCs)derived from umbilical cord blood (UCB)mononuclear cells (MNCs).
METHODSUCB was chosen as the source of EPCs. Erythrocytes were precipitated by hydroxyethyl starch (HES). MNCs were separated by Ficoll density gradient centrifugation. Erythroid progenitor cell were generated from MNC ex vivo in suspension culture supplemented with stem cell growth factor, insulin growth factor, erythropoietin, Fms- liketyrosinekinase ligand, transferrin and dexamethasone. Cell maturation was evaluated by morphologic analysis and CD71/CD235a expression profiling. In vitro induced cells were cryopreserved using different cryopreservation media. The cell survival rate, phenotype and proliferation curves were detected after cell thawing.
RESULTSWith the extension of culture time, the total number of cells increased significantly accompanied with the elevation of CD71 and CD235 positive populations. After 14- day inducing, the cells reached to approximately 110 times of the starting number with the cell viability as (88.92±0.95)%. The percentages of cell surface markers were (86.77±9.11)% for CD71 and (64.47±16.67)% for CD71/CD235, respectively. With the extension of inducing time, wright- Giemsa staining showed that the middle erythroblasts appeared mostly at day 10, and the late erythroblasts were seen at day 14. The red pellets were present at day 14, which indicated the more production of hemoglobin. Colony forming assay showed that erythroid colonies at induction day 7 were higher than that for non-induced cells (326.00±97.96vs 61.60±20.03 per 2 000 cells). With the extension of culture time, the number of erythroid colonies decreased. Induced EPCs were preserved with different cryopreservation solutions, in which 10% DMSO were better than 5% DMSO. Additionally, 10% DMSO + 2% HSA showed no different with 10% DMSO + 5% HSA. Combined 50% plasma with 2% HSA was more effective.
CONCLUSIONSThis non- serum culture media could effectively induced and expanded EPCs, and 10% DMSO + 2% HSA + 50% plasma appeared to be a desirable cryopreservation solution for EPCs from UCB.
Cell Culture Techniques ; Cell Differentiation ; Cell Survival ; Cells, Cultured ; Cryopreservation ; methods ; Erythroblasts ; cytology ; Erythroid Precursor Cells ; cytology ; Fetal Blood ; cytology ; Humans ; Leukocytes, Mononuclear ; cytology ; Umbilical Cord
5.Expression of human ermap gene in umbilical cord blood mononuclear cells during differentiation and development towards erythroid lineage.
Li-Dan LIN ; Xin-Rong HE ; Tie-Zhen YE ; Ying-Yi HE ; Jing-Ming GUAN ; Ying CHEN ; Jie-Fang LIANG
Journal of Experimental Hematology 2008;16(2):328-332
The aim of study was to explore the potential of human erythroid membrane associated protein (ERMAP) gene in erythroid cell differentiation and development, mononuclear cells (MNCs) were isolated from umbilical cord blood and induced to erythroid cell differentiation by SCF, IL-3 and EPO. The cell morphology was observed by using optical microscopy, the positive rate of cells was counted by biphenylamine staining and the ratios of CD36+/CD235a-, CD36+/CD235a+, CD36-/CD235a+ cells were detected by flow cytometry, the change of human ermap gene expression level was analyzed by using fluorescent quantitative PCR (FQ-PCR). The results showed that the ermap gene expression level increased while MNCs were induced to erythroid lineage after treatment with SCF, IL-3 and EPO. It is concluded that the human ermap gene plays an important role in differentiation and development of erythroid cells.
Blood Group Antigens
;
genetics
;
metabolism
;
Butyrophilins
;
Cell Differentiation
;
genetics
;
Cells, Cultured
;
Erythroid Cells
;
cytology
;
Fetal Blood
;
cytology
;
Humans
;
Leukocytes, Mononuclear
;
cytology
;
metabolism
;
Polymerase Chain Reaction
;
methods
6.In vitro suspension and bioreactor culture of hematopoietic cells.
Zhan-You CHI ; Quan-Ming XIA ; Zi-Zhen KANG ; Wen-Song TAN ; Gan-Ce DAI
Chinese Journal of Biotechnology 2003;19(5):587-592
Stirred culture offers a number of advantages over static systems as it maintains a stable, homogeneous culture environment and is easy to scale-up. This paper focused on the development and application of stirred tank bioreactor to culture hematopoietic cells. Preliminary study of stirred culture of hematopoietic cells was carried out in cord blood mononuclear cells culture in spinner flask. The results showed that the amplification rates of total cell, CFU-GM and BFU-E, with the exception of CFU-Mk, were greater in spinner flask than T-flask. The number of total cells increased 20 fold after 14 days incubation in spinner flask. The amplification rates of CFU-GM, CFU-Mk and BFU-E reached maximum at 10th day, 10th day and 7th day respectively, and the maximal amplification rates were 9.2-fold, 5.5-fold and 2.4-fold respectively, whereas the rate of CD34+ cells in spinner flask was (6.7 +/- 4.0)-fold at day 10. These results indicated that the stirred culture system is better than the static culture systems for hematopoietic cell proliferation. The biocompatibility of cord blood MNC to different types of materials used in bioreactors was also tested. The results showed that glass, stainless steel 316L and polytetraflouroethylene (PTFE) supported the growth of hematopoietic cells well. A higher cell density was reached in stirred bioreactors with controlled pH and DO than static culture. These findings suggested that the controlled large-scale culture could be used to overcome the clinical shortage of hematopoietic cells.
Antigens, CD34
;
metabolism
;
Bioreactors
;
Cell Culture Techniques
;
instrumentation
;
methods
;
Erythroid Precursor Cells
;
cytology
;
Fetal Blood
;
cytology
;
Granulocyte-Macrophage Progenitor Cells
;
cytology
;
Humans
;
Polytetrafluoroethylene
;
Stainless Steel
7.Significance of Morphological Examination, Cytochemical Staining Combined with Bone Marrow Biopsy in Differential Diagnosis of Myelodysplastic Syndrome with Low Blasts and Hemolytic Anemia.
Li-Lin GU ; Hui-Yuan KANG ; Yu-Ling PAN ; Gai-Xia LIU ; Su-Jun GE ; Mian-Yang LI ; Cheng-Bin WANG
Journal of Experimental Hematology 2016;24(1):138-143
OBJECTIVETo explore the value of morphological examination, cytochemical staining combined with bone marrow biopsy in the differential diagnosis between myelodysplastic syndrome (MDS) with low blasts and hemolytic anemia (HA).
METHODSThe clinical data of 85 cases of myelodysplastic syndrome with low blasts (< 5%) and 61 patients with hemolytic anemia in Chinese PLA's Gerneral hospital from September 2009 to March 2015 were retrospectively analysed. The clinical characteristics, cytogenetic and molecular features, bone marrow cell count and morphology features, cytochemical staining results and bone marrow biopsy features of above-methioned patients were compared.
RESULTSThere was no significant difference (P > 0.05) in clinical data between MDS group and HA group. Megakaryocytic dysplasia-positive rate, and ring sideroblasts positive rate, and PAS positive rate were significantly higher in MDS group than those that in HA group (P < 0.05). Abnormal localization of immature precursors (ALIP) and megakaryocytic dysplasia positive rate in bone marrow biopsy were significantly higher in MDS group than those that in HA group (P < 0.05), 90.6% of MDS with low blasts patients were identifiable by combined detections.
CONCLUSIONCombining detection of morphology, cytochemistry staining and bone marrow biopsy has been confirmed to be more useful for differential diagnosis between MDS with low blasts and HA.
Anemia, Hemolytic ; complications ; diagnosis ; Biopsy ; Bone Marrow Cells ; cytology ; Diagnosis, Differential ; Erythroid Precursor Cells ; cytology ; Humans ; Megakaryocytes ; cytology ; Myelodysplastic Syndromes ; complications ; diagnosis ; Retrospective Studies ; Staining and Labeling
8.The effects of the Smad3-knockout on the hematopoiesis of mouse.
Ling ZHANG ; Zhao SUN ; Ai-Ling SHEN ; Li MA ; Xue-Ying JIANG ; Guan-Jie MA ; Xiao YANG ; Chun-Hua ZHAO
Chinese Journal of Biotechnology 2003;19(4):428-432
The effects of the Smad3- knockout on the hematopoiesis of mouse were investigated in this work. Five pairs of wild type and Smad3- null mice were studied. White blood cell(WBC), red blood cell(RBC) and platelet (PLT) counting of peripheral blood cells were performed with blood obtained from tails. And white blood cells were classified by their morphology. Bone marrow nucleated cells (BMNCs) were counted and classified. The CFU-GM, BFU-E, CFU-GEMM yields were measured in each pair of mice. CFU-S yield of each mouse was measured by injecting bone marrow cells into lethally irradiated 8-10 weeks old wild type female mice. And the pathomorphism of their bone marrows, spleens and livers were observed. As a result, WBC and PLT of Smad3- null mice were significantly higher than those in wild type mice. Smad3- null mice had much more proportion of granulocytes in classification. There wasn't any difference in RBC counting and BFU-E measurement. The yield of CFU-GM increased, while the yields of CFU-GEMM and CFU-S markedly reduced. Bone marrows are actively proliferative, with granulocytosis. The granulocyte/erythrocyte ratio increased. There were no obviously alterative in spleen and liver. Thus Smad3- knockout results in a decreased number of stem and progenitor cells. Moreover hematopoietic differentiation is abnormal with a tendency to forming more granulocytes and platelets. The effect of Smad3 on hematopoiesis is correlative to that of TGF-beta.
Animals
;
Bone Marrow Cells
;
cytology
;
metabolism
;
Cell Differentiation
;
Erythrocytes
;
cytology
;
metabolism
;
Erythroid Precursor Cells
;
cytology
;
metabolism
;
Female
;
Granulocyte-Macrophage Progenitor Cells
;
cytology
;
metabolism
;
Granulocytes
;
cytology
;
metabolism
;
Hematopoiesis
;
genetics
;
Mice
;
Mice, Knockout
;
Myeloid Progenitor Cells
;
cytology
;
metabolism
;
Smad3 Protein
;
genetics
9.Role of Ras/ERK-dependent pathway in the erythroid differentiation of K562 cells.
Chi Dug KANG ; In Rok DO ; Kwang Woon KIM ; Byung Kwon AHN ; Sun Hee KIM ; Byung Seon CHUNG ; Byung Hak JHUN ; Mi Ae YOO
Experimental & Molecular Medicine 1999;31(2):76-82
The chronic myelogenous leukemic K562 cell line carrying Bcr-Abl tyrosine kinase is considered as pluripotent hematopoietic progenitor cells expressing markers for erythroid, granulocytic, monocytic, and megakaryocytic lineages. Here we investigated the signaling modulations required for induction of erythroid differentiation of K562 cells. When the K562 cells were treated with herbimycin A (an inhibitor of protein tyrosine kinase), ras antisense oligonucleotide, and PD98059 (a specific inhibitor of MEK), inhibition of ERK/MAPK activity and cell growth, and induction of erythroid differentiation were observed. The ras mutant, pZIPRas61leu-transfected cells, K562-Ras61leu, have shown a markedly decreased cell proliferation rate with approximately 2-fold doubling time, compared with the parental K562 cells, and about 60% of these cells have shown the phenotype of erythroid differentiation. In addition, herbimycin A inhibited the growth rate and increased the erythroid differentiation, but did not affect the elevated activity of ERK/MAPK in the K562-Ras61leu cells. On the other hand, effects of PD98059 on the growth and differentiation of K562-Ras61leu cells were biphasic. At low concentration of PD98059, which inhibited the elevated activity of ERK/MAPK to the level of parental cells, the growth rate increased and the erythroid differentiation decreased slightly, and at high concentration of PD98059, which inhibited the elevated activity of ERK/MAPK below that of the parental cells, the growth rate turned down and the erythroid differentiation was restored to the untreated control level. Taken together, these results suggest that an appropriate activity of ERK/MAPK is required to maintain the rapid growth and transformed phenotype of K562 cells.
Androstadienes/pharmacology
;
Ca(2+)-Calmodulin Dependent Protein Kinase
;
Cell Differentiation/drug effects
;
Enzyme Inhibitors/pharmacology
;
Erythroid Progenitor Cells/physiology*
;
Erythroid Progenitor Cells/cytology
;
Erythropoiesis*
;
Flavones/pharmacology
;
Human
;
K562 Cells
;
Leukemia, Myeloid/pathology
;
Oligonucleotides, Antisense/pharmacology
;
Quinones/pharmacology
;
ras Proteins/metabolism*
10.Identification and analysis of expressed sequence tags related to K562 cells into erythroid differentiation.
Jia YU ; Jun-wu ZHANG ; Han PENG ; Deng CHEN
Acta Academiae Medicinae Sinicae 2004;26(2):150-154
OBJECTIVETo isolate expressed sequence tags (ESTs) related to K562 cells erythroid differentiation.
METHODSModified differential display reverse transcription polymerase chain reaction (DDRT-PCR) method was applied to identify differential ESTs in uninduced and induced K562 cells by HEMIN for 36 hours. Remarkable differential ESTs were firstly selected for cloning, sequencing and bioinformational analyzing. Several ESTs representing new sequence or providing functional clue were selected for Northern blot analysis.
RESULTSSixty differentially expressed cDNA fragments related to K562 cells inducted into erythroid differentiation by HEMIN were obtained. Among them, 38 were upregulated and 22 downregulated. Among the 40 differential ESTs selected for cloning, sequencing and bioinformationally analyzing, 23 were found to match to known GenBank sequences and 10 represented cDNA sequences with only dbEST database matches and 7 ESTs have no any database matches. The results of 6 in 8 ESTs selected for Northern blot analysis were shown to be consistent with the differential expressions of DDRT-PCR.
CONCLUSIONSThe improved DDRT-PCR method had successfully overcome the problem of false positive. These ESTs provide some clue for studying the molecular mechanisms and regulation network of erythroid differentiation.
Cell Differentiation ; drug effects ; Cell Transformation, Neoplastic ; drug effects ; Erythroid Cells ; cytology ; Expressed Sequence Tags ; Hemin ; pharmacology ; Humans ; K562 Cells ; cytology ; metabolism ; Sequence Tagged Sites