1.Comparison of retention forces with various fabrication methods and materials in double crowns.
Melahat ÇELIK GÜVEN ; Meral TUNA ; Ergun BOZDAĞ ; Gizem Nur ÖZTÜRK ; Gulsen BAYRAKTAR
The Journal of Advanced Prosthodontics 2017;9(4):308-314
PURPOSE: The purpose of this study was to analyze the retention force changes and wear behaviours of double-crown systems over long-term use. MATERIALS AND METHODS: Ten groups, each consisting of six samples, were evaluated. Specifically, casting gold alloy primary crown - casting gold alloy secondary crown (AA), laser sintering primary crown - laser sintering secondary crown (LL), casting Cr alloy primary crown - casting Cr alloy secondary crown, (CC) zirconia primary crown - electroformed secondary crown (ZA), and CAD/CAM titanium alloy primary crown - CAD/CAM titanium alloy secondary crown (TT) groups were evaluated at cone angles of 4° and 6°. The samples were subjected to 5,000 insertion-separation cycles in artificial saliva, and the retention forces were measured every 500 cycles. The wear levels were analyzed via SEM at the beginning and end of the 5,000 cycles. RESULTS: In all samples, the retention forces increased when the conus angle decreased. The highest initial and final retention force values were found in the LL-4° group (32.89 N-32.65 N), and the lowest retention force values were found in the ZA6° group (5.41 N-6.27 N). The ZA groups' samples showed the least change in the retention force, and no wear was observed. In the other groups, wear was observed mostly in the primary crowns. CONCLUSION: More predictable, clinically relevant, and less excursive retention forces can be observed in the ZA groups. The retention force values of the LL groups were statically similar to those of the other groups, except the ZA groups.
Alloys
;
Conus Snail
;
Crowns*
;
Methods*
;
Saliva, Artificial
;
Titanium
2.Decellularization of Trachea With Combined Techniques for Tissue-Engineered Trachea Transplantation
Aysegul BATIOGLU-KARAALTIN ; Ercüment OVALI ; Mehmet V KARAALTIN ; Murat YENER ; Mehmet YILMAZ ; Fatma EYÜPOĞLU ; Yetkin Zeki YILMAZ ; Erol Rüştü BOZKURT ; Necdet DEMIR ; Esma KONUK ; Ergun Süreyya BOZDAĞ ; Ozgür YIĞIT ; Harun CANSIZ
Clinical and Experimental Otorhinolaryngology 2019;12(1):86-94
OBJECTIVES: The purpose of this study is to shorten the decellularization time of trachea by using combination of physical, chemical, and enzymatic techniques. METHODS: Approximately 3.5-cm-long tracheal segments from 42 New Zealand rabbits (3.5±0.5 kg) were separated into seven groups according to decellularization protocols. After decellularization, cellular regions, matrix and strength and endurance of the scaffold were followed up. RESULTS: DNA content in all groups was measured under 50 ng/mg and there was no significant difference for the glycosaminoglycan content between group 3 (lyophilization+deoxycholic acid+de-oxyribonuclease method) and control group (P=0.46). None of the decellularized groups was different than the normal trachea in tensile stress values (P>0.05). Glucose consumption and lactic acid levels measured from supernatants of all decellularized groups were close to group with cells only (76 mg/dL and 53 mg/L). CONCLUSION: Using combination methods may reduce exposure to chemicals, prevent the excessive influence of the matrix, and shorten the decellularization time.
Deoxycholic Acid
;
DNA
;
Freeze Drying
;
Glucose
;
Lactic Acid
;
Rabbits
;
Tissue Engineering
;
Trachea