1.Identification of Soluble Epoxide Hydrolase Inhibitors from the Seeds of Passiflora edulis Cultivated in Vietnam
To Dao CUONG ; Hoang THI NGOC ANH ; Tran Thu HUONG ; Pham Ngoc KHANH ; Vu Thi HA ; Tran Manh HUNG ; Young Ho KIM ; Nguyen Manh CUONG
Natural Product Sciences 2019;25(4):348-353
Soluble epoxide hydrolases (sEH) are enzymes present in all living organisms, metabolize epoxy fatty acids to 1,2-diols. sEH in the metabolism of polyunsaturated fatty acids plays a key role in inflammation. In addition, the endogenous lipid mediators in cardiovascular disease are also broken down to diols by the action of sEH that enhanced cardiovascular protection. In this study, sEH inhibitory guided fractionation led to the isolation of five phenolic compounds trans-resveratrol (1), trans-piceatannol (2), sulfuretin (3), (+)-balanophonin (4), and cassigarol E (5) from the ethanol extract of the seeds of Passiflora edulis Sims cultivated in Vietnam. The chemical structures of isolated compounds were determined by the interpretation of NMR spectral data, mass spectra, and comparison with data from the literature. The soluble epoxide hydrolase (sEH) inhibitory activity of isolated compounds was evaluated. Among them, trans-piceatannol (2) showed the most potent inhibitory activity on sEH with an IC₅₀ value of 3.4 µM. This study marks the first time that sulfuretin (3) was isolated from Passiflora edulis as well as (+)-balanophonin (4), and cassigarol E (5) were isolated from Passiflora genus.
Cardiovascular Diseases
;
Epoxide Hydrolases
;
Ethanol
;
Fatty Acids
;
Fatty Acids, Unsaturated
;
Inflammation
;
Metabolism
;
Passiflora
;
Passifloraceae
;
Phenol
;
Vietnam
2.Cloning and characterization of an oxiranedicarboxylate hydrolase from Labrys sp. WH-1.
Wen-Na BAO ; Zi-Sheng LUO ; Shi-Wang LIU ; Yuan-Feng WU ; Pei-Lian WEI ; Gong-Nian XIAO ; Yong LIU
Journal of Zhejiang University. Science. B 2019;20(12):995-1002
OBJECTIVE:
This study aimed to clone and characterize the oxiranedicarboxylate hydrolase (ORCH) from Labrys sp. WH-1.
METHODS:
Purification by column chromatography, characterization of enzymatic properties, gene cloning by protein terminal sequencing and polymerase chain reaction (PCR), and sequence analysis by secondary structure prediction and multiple sequence alignment were performed.
RESULTS:
The ORCH from Labrys sp. WH-1 was purified 26-fold with a yield of 12.7%. It is a monomer with an isoelectric point (pI) of 8.57 and molecular mass of 30.2 kDa. It was stable up to 55 °C with temperature at which the activity of the enzyme decreased by 50% in 15 min (T5015) of 61 °C and the half-life at 50 °C (t1/2, 50 °C) of 51 min and was also stable from pH 4 to 10, with maximum activity at 55 °C and pH 8.5. It is a metal-independent enzyme and strongly inhibited by Cu2+, Ag+, and anionic surfactants. Its kinetic parameters (Km, kcat, and kcat/Km) were 18.7 mmol/L, 222.3 s-1, and 11.9 mmol/(L·s), respectively. The ORCH gene, which contained an open reading frame (ORF) of 825 bp encoding 274 amino acid residues, was overexpressed in Escherichia coli and the enzyme activity was 33 times higher than that of the wild strain.
CONCLUSIONS
The catalytic efficiency and thermal stability of the ORCH from Labrys sp. WH-1 were the best among the reported ORCHs, and it provides an alternative catalyst for preparation of L(+)-2,3-dihydrobutanedioic acid.
Alphaproteobacteria/enzymology*
;
Cloning, Molecular
;
Dicarboxylic Acids/metabolism*
;
Enzyme Stability
;
Epoxide Hydrolases/metabolism*
3.Engineering the enantioselectivity of biocatalysts.
Chinese Journal of Biotechnology 2009;25(12):1770-1778
Wild-type biocatalysts usually show high activity and selectivity towards their native substrates. Since non-native substrates are often used in synthetically useful biocatalytic transformations, it is necessary to engineer enzymes for improved activity, stability and selectivity (chemo-, regio- and stereoselectivity). Herein we give an overview of the recent advances in engineering the enantioselectivity of biocatalysts, with an aim to stimulate further development of this important field in China.
Animals
;
Biocatalysis
;
Epoxide Hydrolases
;
genetics
;
metabolism
;
Esterases
;
genetics
;
metabolism
;
Humans
;
Lipase
;
genetics
;
metabolism
;
Protein Engineering
;
methods
;
Stereoisomerism
4.Gene variance in microsomal epoxide hydrolase and the susceptibility of coal workers' pneumoconiosis.
Congcong CHEN ; Lijuan WANG ; Jingjin YANG ; Ting WANG ; Xiaoming JI ; Baiqun WU ; Ruhui HAN ; Chunhui NI ; E-mail: CHNI@NJMU.EDU.CN.
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(7):492-495
OBJECTIVETo explore whether the tagging single nucleotide polymorphisms (SNPs) within EPHX1 gene were involved in the genetic susceptibility to coal worker's pneumoconiosis (CWP) by case-control study.
METHODSThis study consisted of 697 CWP patients and 694 controls. All the subjects were Han Chinese, underground coal miners and recruited from coal mines of Xuzhou Mining Business Group Co Ltd.. The venous blood samples were obtained from all subjects and extracted genome DNA from the isolated leucocytes. Three SNPs were selected from the HapMap and the genotyping was done by the TaqMan method with the ABI 7900HT Real Time PCR system.
RESULTSThe Single SNP analyses showed that the genotype frequencies of EPHX1 (rs2234922) was significantly associated with decreased risk of CWP under co-dominant model (OR = 0.22, 95% CI = 0.06~0.79, P = 0.020), recessive model (OR = 0.23, 95% CI = 0.06~0.82, P = 0.023), and addictive model (OR = 0.75, 95% CI = 0.58~0.96, P = 0.022). The further stratification analysis showed that the risk of CWP will significantly decreased in non-smoking groups (OR = 0.10, 95% CI = 0.01~0.83, P = 0.033).
CONCLUSIONSOur results suggest that individuals with the EPHX1 (rs223492) GG genotype was associated with a dereased risk of CWP, and it has a protective effect on the developing CWP.
Anthracosis ; genetics ; Case-Control Studies ; Coal ; Epoxide Hydrolases ; genetics ; Genetic Predisposition to Disease ; Genotype ; Humans ; Polymorphism, Single Nucleotide ; Risk Factors ; Sequence Analysis, DNA
5.Relationship between polymorphisms of genes encoding microsomal epoxide hydrolase and glutathione S-transferase P1 and chronic obstructive pulmonary disease.
Dan XIAO ; Chen WANG ; Min-jie DU ; Bao-sen PANG ; Hong-yu ZHANG ; Bai XIAO ; Jing-zhong LIU ; Xin-zhi WENG ; Li SU ; David C CHRISTIANI
Chinese Medical Journal 2004;117(5):661-667
BACKGROUNDCigarette smoking is the major risk factor for chronic obstructive pulmonary disease (COPD). However, only 10% - 20% of chronic heavy cigarette smokers develop symptomatic disease. COPD is most likely the result of complex interactions between environmental and genetic factors. Genetic susceptibility to COPD might depend on the variations in enzyme activities that detoxify cigarette smoke products, such as microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST). In this study, we investigated the relationship between polymorphisms in the genes encoding mEH and glutathione S-transferase P1 (GSTP1) and COPD in a Chinese population.
METHODSPolymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to find mEH polymorphism in exon 3 (Tyr113-->His), exon 4 (His139-->Arg) and GSTP1 polymorphism in exon 5 (Ile105-->Val) in 100 COPD patients and 100 age- and sex-matched healthy controls.
RESULTSThe proportion of mEH exon 3 heterozygotes was significantly higher in patients with COPD than that in the control subjects (42% vs 32%). The odds ratio (OR) adjusted by age, sex, body mass index (BMI) and cigarette years was 2.96 (95% CI 1.24 - 7.09). There was no marked difference in very slow activity genotype versus other genotypes between COPD patients and the controls. When COPD patients were non-smokers, the OR of very slow activity genotype versus other genotypes was more than 1.00; and when COPD patients were smokers (current smokers and ex-smokers), the OR was less than 1.00. There was no significant difference in GSTP1 polymorphism adjusted by age, sex, BMI and smoking between COPD patients and the controls.
CONCLUSIONSmEH exon 3 heterozygotes might be associated with susceptibility to COPD in China. The interaction might exist between mEH genotype and smoke. The gene polymorphism for GSTP1 might not be associated with susceptibility to COPD in the Chinese population.
Aged ; Epoxide Hydrolases ; genetics ; Female ; Genotype ; Glutathione S-Transferase pi ; Glutathione Transferase ; genetics ; Humans ; Isoenzymes ; genetics ; Male ; Middle Aged ; Mutation ; Polymorphism, Genetic ; Pulmonary Disease, Chronic Obstructive ; etiology ; genetics
6.Increase of LTB4 level and expression of LTA4-hydrolase mRNA in lung tissue and cerebral cortex in asthmatic rats.
Yang-mei DENG ; Qiang-min XIE ; Ji-qiang CHEN ; Jun-fang DENG ; Ru-lian BIAN
Journal of Zhejiang University. Medical sciences 2003;32(4):296-322
OBJECTIVETo investigate antigen-induced changes of leukotriene B(4)(LTB(4))content and LTA(4)-hydrolase mRNA expression in lung tissue and cerebral cortex in sensitized rats.
METHODSThe contents of LTB(4) in lung tissue and cerebral cortex homogenates and LTA(4)-hydrolase mRNA expression after antigen challenge by aerosol were respectively detected by reverse-phase high performance liquid chromatography(RP-HPLC) and semi-quantitative RT-PCR.
RESULTThe LTB(4) levels in lung tissue and cerebral cortex homogenates in asthmatic rats were significantly higher than those in control (P%0.05), and LTA4-hydrolase mRNA expression was also increased in asthmatic group. Dexamethason(DXM, 0.5 mg/kg, i.p.) decreased the LTB(4) content and inhibited the LTA(4)-hydrolase mRNA expression significantly in asthmatic rats(P%0.05).
CONCLUSIONLTB(4) content and LTA(4)-hydrolase mRNA expression in cerebral cortex and lung tissue are increased in asthmatic rats, and there may exist neuroimmunological cross-talking between central nervous system and lung tissue in asthma.
Animals ; Asthma ; metabolism ; Cerebral Cortex ; chemistry ; metabolism ; Epoxide Hydrolases ; genetics ; Female ; Leukotriene B4 ; analysis ; Lung ; chemistry ; metabolism ; Male ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley
7.Influence of genetic polymorphisms of epoxide hydrolase 1 on metabolism of styrene in body.
Fang ZHANG ; Jin-long MENG ; Hua SHAO ; Zhi-hu ZHANG ; Bin FENG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2013;31(7):496-499
OBJECTIVETo investigate the role of genetic polymorphisms of epoxide hydrolase 1 (EPHX1) in the metabolism of styrene in vivo.
METHODSFifty-six styrene-exposed workers, who worked in the painting workshop of an enterprise for manufacturing glass fiber-reinforced plastic yachts in Shandong Province, China for over one year and were protected in approximately the same way, were selected as study subjects. The 8-hour time-weighted average concentration (8 h-TWA) of styrene and the concentrations of mandelic acid (MA) and phenyl glyoxylic acid (PGA) as urinary metabolites were measured. The genetic polymorphisms of EPHX1 were detected by polymerase chain reaction-restriction fragment length polymorphism analysis.
RESULTSThe urinary concentrations of MA and PGA were 177.25±82.36 mg/g Cr and 145.91±69.73 mg/g Cr, respectively, and the 8 h-TWA of styrene was 133.28±95.81 mg/m3. Urinary concentrations of MA and PGA were positively correlated with 8 h-TWA of styrene (R=0.861, P < 0.05; R=0.868, P < 0.05). The subjects were divided into high-exposure group (8 h-TWA >50 mg/m(3)) and low-exposure group (8 h-TWA ≤ 50 mg/m(3), and in the two groups, the urinary concentrations of MA and PGA were significantly higher in the individuals carrying high-activity genotypes of EPHX1 than in those carrying low-activity genotypes of EPHX1 (P < 0.05).
CONCLUSIONGenetic polymorphisms of EPHX1 play an important role in the metabolic process of styrene in vivo.
Adult ; Air Pollutants, Occupational ; pharmacokinetics ; China ; Epoxide Hydrolases ; genetics ; Glyoxylates ; urine ; Humans ; Male ; Mandelic Acids ; urine ; Occupational Exposure ; Polymorphism, Genetic ; Styrene ; pharmacokinetics
8.Interactions Between Bisphenol A Exposure and GSTP1 Polymorphisms in Childhood Asthma.
Tien Jen LIN ; Wilfried J J KARMAUS ; Mei Lien CHEN ; Jiin Chyr HSU ; I Jen WANG
Allergy, Asthma & Immunology Research 2018;10(2):172-179
PURPOSE: Bisphenol A (BPA) exposure may increase the risk of asthma. Genetic polymorphisms of oxidative stress-related genes, glutathione S-transferases (GSTM1, GSTP1), manganese superoxide dismutase, catalase, myeloperoxidase, and microsomal epoxide hydrolase may be related to BPA exposure. The aim is to evaluate whether oxidative stress genes modulates associations of BPA exposure with asthma. METHODS: We conducted a case-control study comprised of 126 asthmatic children and 327 controls. Urine Bisphenol A glucuronide (BPAG) levels were measured by ultra-performance liquid chromatography/tandem mass spectrometry, and genetic variants were analyzed by a TaqMan assay. Information on asthma and environmental exposure was collected. Analyses of variance and logistic regressions were performed to determine the association of genotypes and urine BPAG levels with asthma. RESULTS: BPAG levels were significantly associated with asthma (adjusted odds ratio [aOR], 1.29 per log unit increase in concentration; 95% confidence interval [CI], 1.081.55). Compared to the GG genotype, children with a GSTP1 AA genotype had higher urine BPAG concentrations (geometric mean [standard error], 12.72 [4.16] vs 11.42 [2.82]; P=0.036). In children with high BPAG, the GSTP1 AA genotype was related to a higher odds of asthma than the GG genotype (aOR, 4.84; 95% CI, 1.0223.06). CONCLUSIONS: GSTP1 variants are associated with urine BPA metabolite levels. Oxidative stress genes may modulate the effect of BPA exposure on asthma.
Asthma*
;
Case-Control Studies
;
Catalase
;
Child
;
Environmental Exposure
;
Epoxide Hydrolases
;
Genotype
;
Glutathione
;
Humans
;
Logistic Models
;
Mass Spectrometry
;
Odds Ratio
;
Oxidative Stress
;
Peroxidase
;
Polymorphism, Genetic
;
Superoxide Dismutase
9.Impact of five genetic polymorphisms on inter-individual variation in warfarin maintenance dose.
Sheng-wen HUANG ; Dao-kang XIANG ; Hai-li WU ; Bao-lin CHEN ; Bang-quan AN ; Gui-fang LI
Chinese Journal of Medical Genetics 2011;28(6):661-665
OBJECTIVETo investigate the effect of genetic polymorphisms in VKORC1, CYP2C9, GGCX, EPHX1, APOE genes on inter-individual variation in warfarin maintenance dose.
METHODSTwo hundred and forty-nine patients with stable warfarin dose were enrolled in this study, and the clinical data and blood samples of the patients were collected. Genotypes for the 5 genes were determined by using PCR and denaturing high performance liquid chromatography (DHPLC) assay. The warfarin maintenance doses were compared among patients with different genotypes of the 5 genes, and a warfarin stable dosing algorithm was derived based on genetic and non-genetic factors.
RESULTSOf the 5 genes, VKORC1, CYP2C9 and GGCX were associated with warfarin stable dose. The multiple linear regression analysis indicated that VKORC1, CYP2C9 and GGCX genes, age and weight, had significant influence on inter-individual variation in warfarin stable dose, which contributed 30.2%, 22.8%, 1.5%, 4.7% and 6.7% respectively. The warfarin stable dosing algorithm acquired from the optimal regression model could explain 57.8% variation in warfarin dose.
CONCLUSIONThis study suggested that genetic factors are the major determinants of the warfarin maintenance dose, and warfarin stable dosing algorithm may be useful for helping clinicians to prescribe warfarin with greater safety and efficiency.
Adolescent ; Adult ; Aged ; Aged, 80 and over ; Alleles ; Anticoagulants ; administration & dosage ; Apolipoproteins E ; genetics ; Aryl Hydrocarbon Hydroxylases ; genetics ; Carbon-Carbon Ligases ; genetics ; Cytochrome P-450 CYP2C9 ; Epoxide Hydrolases ; genetics ; Female ; Gene Frequency ; Genotype ; Humans ; Male ; Middle Aged ; Mixed Function Oxygenases ; genetics ; Pharmacogenetics ; Polymorphism, Single Nucleotide ; Precision Medicine ; Vitamin K Epoxide Reductases ; Warfarin ; administration & dosage ; Young Adult
10.High-throughput screening of human soluble epoxide hydrolase inhibitors.
Shou-Bao WANG ; Jing GUO ; Xiao-Ming YU ; Guan-Hua DU
Acta Pharmaceutica Sinica 2010;45(11):1367-1372
To screen potential human soluble epoxide hydrolase (hsEH) inhibitors, a high-throughput screening model in 384-well microplate with total volume of 50 microL was established. Recombinant hsEH was cloned and expressed in E. coli. and its specific substrate PHOME was synthesized. The HTS model was based on fluorescence analysis with enhanced sensitivity and specificity (Z' = 0.65). A total of 47 360 samples (including 25 040 compounds and 22 320 natural products) were screened, of which 950 samples with inhibition greater than 80% were selected for further rescreening. Finally, two compounds with high inhibitory activity were identified, whose IC50 value were 8.56 and 4.31 micromol x L(-1), separately. The results indicated that the method was stable, sensitive, reproducible and also suitable for high-throughput screening.
Drug Evaluation, Preclinical
;
methods
;
Enzyme Inhibitors
;
analysis
;
chemistry
;
Epoxide Hydrolases
;
antagonists & inhibitors
;
chemistry
;
metabolism
;
Escherichia coli
;
metabolism
;
High-Throughput Screening Assays
;
methods
;
Inhibitory Concentration 50
;
Recombinant Proteins
;
metabolism
;
Reproducibility of Results
;
Sensitivity and Specificity
;
Spectrometry, Fluorescence
;
methods
;
Substrate Specificity