1.Expression and refolding of OLA Ⅰ protein with peptides derived from sheeppox virus.
Zhanhong WANG ; Zhixun ZHAO ; Guohua WU ; Yang DENG ; Guoqiang ZHU ; Fangyan ZHAO ; Zengjun LU ; Qiang ZHANG
Chinese Journal of Biotechnology 2022;38(1):139-147
The aim of this study was to refold the OvisAries leukocyte antigen (OLA) class Ⅰ protein with peptides derived from sheeppox virus (SPPV) to identify SPPV T cell epitopes. Two pairs of primers were designed based on the published sequence of a sheep major histocompatibility complex Ⅰ to amplify the heavy chain gene of OLA Ⅰ α-BSP and the light chain gene of OLA Ⅰ-β2m. Both genes were cloned into a pET-28a(+) expression vector, respectively, and induced with ITPG for protein expression. After purification, the heavy chain and light chain proteins as well as peptides derived from SPPV were refolded at a ratio of 1:1:1 using a gradual dilution method. Molecular exclusion chromatography was used to test whether these peptides bind to the OLA Ⅰ complex. T-cell responses were assessed using freshly isolated PBMCs from immunized sheep through IFN-γ ELISPOT with peptides derived from SPPV protein. The results showed that the cloned heavy chain and light chain expressed sufficiently, with a molecular weight of 36.3 kDa and 16.7 kDa, respectively. The protein separated via a SuperdexTM 200 increase 10/300 GL column was collected and verified by SDS-PAGE after refolding. One SPPV CTL epitope was identified after combined refolding and functional studies based on T-cell epitopes derived from SPPV. An OLA Ⅰ/peptide complex was refolded correctly, which is necessary for the structural characterization. This study may contribute to the development of sheep vaccine based on peptides.
Animals
;
Capripoxvirus
;
Epitopes, T-Lymphocyte/genetics*
;
Peptides/genetics*
;
Poxviridae Infections
;
Sheep
;
Sheep Diseases
3.Prediction and immunologic identification of antigenic epitopes in genus-specific outer membrane protein LipL41 of Leptospira interrogans.
Jiu-kun JIANG ; Xu-ai LIN ; Jie YAN
Journal of Zhejiang University. Medical sciences 2008;37(6):585-591
OBJECTIVETo predict and screen the efficient antigenic epitopes in genus-specific envelope protein LipL41 of Leptospira interrogans and to determine the immunoreactive diversity of LipL41s from different genotypes.
METHODSBioinformatic methods were applied to predict the T/B combined epitope candidates in LipL41/1 and LipL41/2 molecules. The nucleotide fragments encoding epitopes were amplified by PCR. Phage display system with SDS-PAGE was performed to obtain the recombinant PIIIs containing different T/B combined epitopes. Western Blot assays were performed to determine the immunoreactivity of recombinant PIIIs to various antisera including antiserum against rLipL41/1, rLipL41/2 and whole cell of L.interrogans strain Lai, and serum from patients with leptospirosis.
RESULTBased on the predicting data, eight common or differential combined epitopes in LipL41s were selected. The nucleotide fragments encoding the epitopes were obtained by PCR. All the T/B combined epitope fragments were correctly inserted into the N end of phage PIII protein and then successfully expressed. All the antisera were able to recognize each of the epitopes but the hybridization signal intensity was different. Among these epitopes, the common T/B combined epitopes LipL41/1-30 and LipL41/1-233 showed a stronger and stable hybridization signals.
CONCLUSIONAll 8 selected T/B combined epitopes in the study are the efficient antigenic epitopes. The common T/B epitopes LipL41/1-30 and LipL41/1-233 can be first used in development of leptospiral MAP vaccine. The cross immunoreaction is between the differential T/B epitopes LipL41s-89,LipL41s-299 and the different antisera.
Amino Acid Sequence ; Antigens, Bacterial ; genetics ; immunology ; Bacterial Vaccines ; genetics ; immunology ; Cloning, Molecular ; Epitopes, B-Lymphocyte ; genetics ; immunology ; Epitopes, T-Lymphocyte ; genetics ; immunology ; Genotype ; Molecular Sequence Data ; Peptide Library
4.Analysis on human T cell epitopes polymorphisms of five specific antigens of Mycobacterium tuberculosis in 13 areas of China.
Shuangshuang CHEN ; Yongjuan XU ; Shiqi XIAO ; Machao LI ; Haican LIU ; Xiuqin ZHAO ; Yi JIANG ; Yimou WU ; Kanglin WAN ;
Chinese Journal of Epidemiology 2016;37(4):553-557
OBJECTIVETo investigate the polymorphisms of the coding gene and the human T cell epitopes of antigen GlnA1, Mpt70, LppX, GroES and LpqH on Mycobacterium tuberculosis complex (MTBC) strains in thirteen provinces of China.
METHODSA total of 173 clinical MTBC isolates from thirteen provinces were selected to test the gene sequences of the five antigens, using PCR and DNA sequencing methods. Sequences were compared and sliced by BioEdit, and the variations of the human and nonhuman T cell epitopes were analyzed. The rates on synonymous mutation (dS), non-synonymous mutation (dN) and dN/dS values were calculated by Mega 6.0 software.
RESULTSAmong the 173 strains, there were two non-synonymous mutations in the non-epitope region of glnA1, one non-synonymous mutations in epitope domain of mpt70, one non-synonymous mutation and one synonymous mutation in the epitope domain of lpqH; while groES showed no mutation. lppX had five non-synonymous mutations and one synonymous mutation in the epitope domain. Nine strains presented higher polymorphism at the same gene locus of position 152 in lppX. And seven of the fifteen epitopes contained in lppX were altered and the dN/dS value of this gene was 0.19.
CONCLUSIONSData from the human T cell epitope domains of MTBC antigens Mpt70, LppX and LpqH contained epitope diversity, indicated that these antigens may have involved in diversifying the selection to evade the host immunity. GlnA1 had the polymorphism in epitope domain, which might have little influence on the immuno-response. While GroES seemed relatively conservative, it could play an important role on identification, diagnosis and the development of potential Mycobacterium tuberculosis vaccine.
Antigens, Bacterial ; genetics ; Bacterial Proteins ; genetics ; China ; Epitopes, T-Lymphocyte ; genetics ; Humans ; Mycobacterium tuberculosis ; genetics ; Polymerase Chain Reaction ; Polymorphism, Genetic ; Sequence Analysis, DNA
5.Dynamic interplay between viral adaptation and immune recognition during HIV-1 infection.
Chihiro MOTOZONO ; Philip MWIMANZI ; Takamasa UENO
Protein & Cell 2010;1(6):514-519
Untreated human immunodeficiency virus (HIV) infections usually lead to death from AIDS, although the rate of the disease progression varies widely among individuals. The cytotoxic T lymphocyte (CTL) response, which is restricted by highly polymorphic MHC class I alleles, plays a central role in controlling HIV replication. It is now recognized that the antiviral efficacy of CTLs at the single cell level is dependent on their antigen specificity and is important in determining the quality of host response to viruses so that the individual will remain asymptomatic. However, because of the extreme mutational plasticity of HIV, HIV-specific CTL responses are continuously and dynamically changing. In order to rationally design an effective vaccine, the questions as to what constitutes an effective antiviral CTL response and what characterizes a potent antigenic peptide to induce such responses are becoming highlighted as needing to be answered.
Animals
;
Antigens, Viral
;
immunology
;
metabolism
;
Epitopes, T-Lymphocyte
;
Evolution, Molecular
;
Genetic Variation
;
HIV Infections
;
immunology
;
virology
;
HIV-1
;
genetics
;
pathogenicity
;
physiology
;
Host-Pathogen Interactions
;
Humans
;
Immunodominant Epitopes
;
T-Lymphocytes, Cytotoxic
;
immunology
;
metabolism
;
virology
;
Virus Replication
6.Genetic analysis of ORF5 of recent Korean porcine reproductive and respiratory syndrome viruses (PRRSVs) in viremic sera collected from MLV-vaccinating or non-vaccinating farms.
Hye Kwon KIM ; Jeong Sun YANG ; Hyoung Joon MOON ; Seong Jun PARK ; Yuzi LUO ; Chul Seung LEE ; Dae Sub SONG ; Bo Kyu KANG ; Soo Kyung ANN ; Chan Hyuk JUN ; Bong Kyun PARK
Journal of Veterinary Science 2009;10(2):121-130
The 23 open reading frame (ORF) 5 sequences of Korean type II porcine reproductive and respiratory syndrome virus (PRRSV) were collected from viremic sera from the (modified live vaccine) MLV-vaccinating and non-vaccinating farms from 2007 to 2008. The samples were phylogenetically analyzed with previous ORF5 sequences, including type I Korean PRRSV, and previously reported or collected sequences from 1997 to 2008. A MN184-like subgroup of type II Korean PRRSV was newly identified in the viremic sera collected from 2007 to 2008. And of the type I PRRSVs, one subgroup had 87.2~88.9% similarity with the Lelystad virus, showing a close relationship with the 27~2003 strain of Spain. The maximum parsimony tree of type II PRRSV from 1997 to 2008 showed that they had evolved to four lineages, subgroups 1, 2, 3 and 4. Most of the recently collected type II PRRSVs belonged to subgroup 4 (48%). The region of three B-cell epitopes and two T-cell epitopes of ORF5 amino acids sequences was considerably different from the MLV in subgroups 3 and 4. In conclusion, the existence of type I PRRSV, which was genetically different from Lelystad virus (Prototype of type I PRRSV), and heterologous type II PRRSVs of viremic pigs detected even in the MLV-vaccinating farms indicated the need for new vaccine approaches for the control of PRRSV in Korea.
Animals
;
Epitopes, B-Lymphocyte/immunology
;
Epitopes, T-Lymphocyte/immunology
;
Evolution, Molecular
;
Korea
;
*Open Reading Frames
;
Phylogeny
;
Pilot Projects
;
Porcine Reproductive and Respiratory Syndrome/blood/genetics/immunology/*virology
;
Porcine respiratory and reproductive syndrome virus/*genetics/immunology
;
RNA, Viral/chemistry/genetics
;
Reverse Transcriptase Polymerase Chain Reaction/veterinary
;
Swine
;
Viral Vaccines/immunology/standards
;
Viremia/genetics/immunology/virology
7.Forecasting of hepatitis C virus CTL epitopes and design of multi-epitopes vaccine.
Duan LI ; Yu-Wei XIE ; Xiao-Ping XUE ; Xue-Fan BAI ; Zhan-Sheng JIA
Chinese Journal of Hepatology 2009;17(10):786-787
Amino Acid Sequence
;
Epitopes, T-Lymphocyte
;
immunology
;
Forecasting
;
HLA Antigens
;
immunology
;
Hepacivirus
;
genetics
;
immunology
;
Hepatitis C
;
immunology
;
virology
;
Hepatitis C Antigens
;
immunology
;
Humans
;
T-Lymphocytes, Cytotoxic
;
immunology
;
virology
;
Viral Hepatitis Vaccines
;
immunology
8.Enhanced immune response of a novel T-cell immunogen in vaccine for foot-and-mouth disease.
Qing ZHAO ; Pu SUN ; Zaixin LIU ; Pinghua LI ; Huifang BAO ; Yimei CAO ; Xingwen BAI ; Yuanfang FU ; Zengjun LU ; Dong LI
Chinese Journal of Biotechnology 2011;27(9):1281-1291
We investigated the enhanced immune response of a recombinant T cell immunogen as an effective cellular immune adjuvant. The T cell immunogen named TI contained several T cell epitopes from the VP1, VP4, 3A and 3D proteins of foot-and-mouth disease virus (FMDV) and two pan-T helper (T(H)) cell sites to broaden the immunogenicity of the protein. Meanwhile, another fusion protein named OA-VP1 was expressed in bacteria, which contained two VP1 proteins of O and Asia1 type FMDV. Mice were vaccinated with commercially inactivated vaccine or OA-VP1 protein with or without the TI immunogen. The results show that mice inoculated with inactivated vaccine or OA-VP1 protein supplemented with TI immunogen produced significantly higher level of neutralizing antibodies (P < 0.01 or P < 0.05) than the mice only inoculated with inactivated vaccine or OA-VP1 protein by microneutralization assay. An obvious increase in T cell number by flow cytometric analysis and significantly higher concentration of IFN-gamma secreted in culture media of spleen lymphocytes were observed in groups supplemented with TI immunogen (P < 0.01). TI immunogen was an effective stimulator for humoral and cellular immunity and could help improve the immunogenicity of inactivated vaccine or protein subunit vaccine.
Adjuvants, Immunologic
;
pharmacology
;
Animals
;
Capsid Proteins
;
genetics
;
immunology
;
Epitopes, T-Lymphocyte
;
genetics
;
immunology
;
Foot-and-Mouth Disease
;
immunology
;
prevention & control
;
virology
;
Foot-and-Mouth Disease Virus
;
immunology
;
Immunization
;
Mice
;
Viral Vaccines
;
genetics
;
immunology
;
pharmacology
9.Construction of gene vaccine of myostatin fusion with T-helper epitope and its effects on forelimb grip in immunized mice.
Liang TANG ; Chen-Tao LIU ; Yuan-Li WANG ; Kai LUO ; Xu-Dan WANG
Chinese Journal of Applied Physiology 2013;29(1):16-19
OBJECTIVETo further study the therapy of wasting muscle by myostatin as a new targets, the eucaryotic expression vector coupled the foreign T-helper epitope of tetanus toxin (TT) to the N terminus of myostatin was constructed, and the effects of the gene vaccine on forelimb grip were tested in immunized mice.
METHODSA DNA fragment encoding the TT epitope followed by the N terminus of mature myostatin (330bp) was synthesized. The eucaryotic expression vector of myostatin was constructed and the chinese hamster ovary (CHO) cells were infected with the recombinant plasmids pVAC-TT-Ms by liposome transfection according to routine laboratory procedure. The myostatin expression was tested by cell immunofluorescence technique in transfected CHO. The forelimbs grip were tested in immunized mice with myostatin gene vaccine.
RESULTSThe eucaryotic expression vector of myostatin coupled TT epitope was constructed successfully through the restriction analysis and sequencing. The recombinant plasmids pVAC-TT-Ms met quality criterion as gene vaccine by analysis OD260/280 and electrophoresis. The myostatin expression was detected obviously in transfected CHO. The forelimb grip in immunized mice had an obvious increase. The average value of forelimb grip of the mice immunized with pVAC-TT-Ms was about 29.88% greater than that of control mice.
CONCLUSIONThe construction of eucaryotic expression vector of myostatin coupled TT epitope is successful in expression for recombinant human mature peptide of myostatin. The gene vaccine of myostatin meet quality criterion. The immunized mice has an obvious increase in forelimb grip.
Animals ; CHO Cells ; Cricetinae ; Cricetulus ; Epitopes, T-Lymphocyte ; Genetic Vectors ; Hand Strength ; Humans ; Male ; Mice ; Mice, Inbred BALB C ; Muscle, Skeletal ; physiology ; Myostatin ; genetics ; immunology ; Plasmids ; Transfection ; Vaccines, DNA ; genetics ; immunology
10.Differential susceptibility of naïve versus cloned CD4+ T cells to antigen-specific and MHC-restricted anergy induction.
Quan-Sheng LIU ; Rui-Hua ZHANG ; Yi-Wei CHU ; Si-Dong XIONG
Acta Physiologica Sinica 2003;55(6):633-640
T cell anergy has been successfully induced under different conditions in cloned CD4(+) T cells, but induction of T cell anergy in vivo has been difficult and controversial. Due to the low frequency of naturally occurring T cell population with specificity to a defined antigen, it is very difficult to study anergy of naïve T cells without prior in vivo priming which complicates the interpretation of experimental data. To solve this problem, we adopted the HNT-TCR transgenic mice which have homogeneous antigen specific CD4(+) T cell population. In this study, we generated an influenza virus hemagglutinin (HA) peptide-specific CD4(+) T cell clone from the HNT-TCR transgenic mice and induced anergy using APCs which were treated with the crosslinker, ECDI (1-ethyl-3-3(3-dimethylaminopropyl) carbodiimide). The proliferative response of the cloned or freshly purified naïve CD4(+) transgenic T cells after treatment with ECDI-treated APCs and the HA peptide antigen was monitored as the index of anergy induction. The results showed that anergy was successfully induced in the cloned HNT-TCR transgenic CD4(+) T cells. It was determined that the induced anergy was antigen- and MHC-specific. By contrast, anergy was not observed in freshly purified naïve CD4(+) transgenic T cells under the same conditions. The results suggest that naïve CD4(+) T cells may have different anergy inducing requirements, or that cloned CD4(+) T cells may have certain priming or in vitro cloning artifact which makes them more susceptible to anergy induction. We propose that induction of T cell anergy may depend on the T cell growth, activation and differentiation state or cloning conditions. The results from the present study may have important implications for the study of the mechanism(s) underlying T cell anergy induction in vivo and for applications of immune tolerance based therapy.
Animals
;
Antigen-Presenting Cells
;
immunology
;
metabolism
;
Antigens, CD
;
genetics
;
immunology
;
metabolism
;
CD4 Antigens
;
immunology
;
CD4-Positive T-Lymphocytes
;
cytology
;
immunology
;
Clonal Anergy
;
genetics
;
immunology
;
Clone Cells
;
immunology
;
Epitopes, T-Lymphocyte
;
biosynthesis
;
Immune Tolerance
;
genetics
;
Major Histocompatibility Complex
;
immunology
;
Mice
;
Mice, Transgenic
;
Receptors, Antigen, T-Cell
;
physiology